
Db2 z/OS

Optimization Hints Grow Up
Chad Reiber, BMC Software

Welcome to Optimization Hints Grow Up … Chad Reiber BMC Software

1

• Optimization Hints Grow Up

• What is optimization hints we know and love

• List of features Db2 z/OS provides us to control access path selection

• Influencers of Access Paths

• Examples you can use to help your application performance

Agenda

Optimization Hints Grow Up
What is optimization hints we know and love
List of features Db2 z/OS provides us to control access paths selection
Influencers of Access Paths
Examples you can use to help your application performance

IBM Db2 has given us several ways to influence access paths. Whether it is to fallback
to older access paths that worked. Tell Db2 how you want the query to access the
data or even use AI to help with access path selection. This presentation will show us

IBM Db2 has given us several ways to influence access paths release after release.
This presentation will look at what those feature/functions were in the past, how
they have changed, and what new ways we have to determine the appropriate access
path.

2

• Article I wrote in 2000
• That’s right Y2K …

Seedy Underworld of Db2

Back in 2000, I wrote an article for the IDUG Journal titled the Seedy Underworld of
Db2. It discussed the new feature in DB2 Version 6 where our world class Db2
Optimizer could be influenced by the deal making backroom of the optimization
hints. It was controversial the time but over the different DB2 releases and twenty
years, IBM has given us several ways to influence the access paths, fallback to older
access paths and just recently to use AI to help with access path determination. In
this presentation, I will highlight where we have been and where we are now with
getting the access path we want and need.
Many times, DBAs and Db2 Performance people are asked to improve performance
without the benefit of the applications being able to make SQL changes. This is just
another bunch of features/functions, that come with Db2 z/OS, individuals can used
to make a difference to the end user.

3

• Db2 Optimizer is still #1
• Better and Better access paths

• Tell us when statistics will help … please SYSFEEDBACK and PROFILES

• More options to control what happens
• Deployment of new code

• Release / Function Level upgrades

• Manage Access Paths
• Avoid pain !!!

Where have we come in 20+ Years

Are we still in the shadows with influencing the optimizer.

IBM and Db2 continues to innovate when it comes to the DBMS, this includes helping
to get the best result for our end users.

While the Optimize is still number 1, there are times where we might need to control
what happens with the access paths. Avoid the Monday Morning headaches, or
worse yet middle of the day headaches

4

• Want great efficient access paths?
• Queries should use effective predicates

• Build Indexes to support the data access

• Collect Statistics on the application data that is correct (and you got it all)

• Perfect !!

• Do you have a couple of hours to discuss this?

• When that is out of your control or that just doesn’t work …

Influence Access Paths

Prevent Access Path Changes

Manage Access Paths

5

• Optimization Parameters at Statement Level
• ZPARM such as STARJOIN
• Runtime Reoptimization at run time

• Override predicate selection at Statement Level
• Predicate Selectivity Overrides

• Specify access path matching by Statement
• Statement-Level access paths

• Specify access path in Plan Table
• Optimization Hints

Influencing Statement Access Paths

There are four specific ways we can help influence statement access paths with in
Db2.

There are number of SQL coding techniques that can help as well. I will not be going
over those with this presentation. But things like catalog statistic changes can help
the optimizer make a decision you really need.

6

• Remember this is how Access Paths partied in V6 - 1999

• Has to be a ZPARM to control this
• OPTHINTS = YES

• Controlled by a Plan Table
• The access path for a particular statement is inserted / update in the plan table

• Plan_Table Column: OPT_HINT is updated with a value

OPTHINTS last on the list but first in our hearts …

Lets start at the beginning. The article I wrote in 2000 on optimization hints. Which
really came out with Db2 V6 in 1999.

An example is helpful here.

7

Add OPTHINT (IDUG1) to the Package Qualifier’s Plan Table

Here is the view of the plan table that I am going to update with my optimization
hint.

OPTHINT is updated to include IDUG1

What you don’t see here is the ‘key’ of the plan table, package name, query number
etc. That is important as the rebind will look to match that to implement the hint.

We will see that in the next couple of slides

8

Rebind the Package with OPTHINT Parameter

Want to implement that optimization hint?

In a static environment you need to rebind with the keyword of OPTHINT, and provide
the opthint name we put into the plan table. In this case IDUG1.

You see the messages from the rebinds – back in 1999, the messages were not so
nice.

Couple other points here, I am saying EXPLAIN(YES) because I want to validate that
my opthint is actually used

9

FILE COMMANDS OPTIONS HELP

DJJ1 Explain Results for PACKAGE MKTCWR_COLLID.CRABCPK.CMP-2601

Command ===> Scroll ===> CSR

More: + >

Actions: S H K R RS RW RI XD XS XP W P T C D U IM SA

LBL STMTNO COST*RATE SQL-STATEMENT

XD01* 472 663.575928 DECLARE INDORD CURSOR FOR SELECT A . PRIMARY_KEY_A , A . PRIMARY_KEY_B , B . ORDER_NBR , B . ORDER_A

XS01* 472 405.719482 DECLARE INDORD CURSOR FOR SELECT A . PRIMARY_KEY_A , A . PRIMARY_KEY_B , B . ORDER_NBR , B . ORDER_A

XP01 472 0.000000 DECLARE INDORD CURSOR FOR SELECT A . PRIMARY_KEY_A , A . PRIMARY_KEY_B , B . ORDER_NBR , B . ORDER_A

COST*RATE QB PL MIX QTYPE METH ACC MTCH IX TBNAME IXNAME NU J O G CU J O G LCK PRE CFE ADEG JDEG

XD01* 663.57592 1 1 0 UNIONA 3 0 N N N N N N N Y N

XD01* 24.567215 3 1 0 NCOSUB 0 R 0 N PD_INDIVIDUAL N N N N N N N N IS S

XD01* 0.022927 4 1 0 CORSUB 0 I 2 Y PD_ORDERS CRORDEX1 N N N N N N N N IS

XD01* 323.23291 5 1 0 NCOSUB 0 R 0 N PD_ORDERS N N N N N N N N IS S

XD01* 0.079407 6 1 0 CORSUB 0 I 2 N PD_INDIVIDUAL CRINDEX1 N N N N N N N N IS

XS01* 405.71948 1 1 0 UNIONA 3 0 N N N N N N N Y N

XS01* 24.544296 3 1 0 NCOSUB 0 R 0 N PD_INDIVIDUAL N N N N N N N N IS S

XS01* 0.022927 4 1 0 CORSUB 0 I 2 Y PD_ORDERS CRORDEX1 N N N N N N N N IS

XS01* 65.398941 5 1 0 NCOSUB 0 I 0 N PD_ORDERS CRORDEX1 N N N N N N N N IS S

XS01* 0.079407 6 1 0 CORSUB 0 I 2 N PD_INDIVIDUAL CRINDEX1 N N N N N N N N IS

XP01 1 1 0 UNIONA 3 0 N N N N N N N Y N

XP01 1 1 0 UNIONA 3 0 N N N N N N N Y N

XP01 2 1 0 NCOSUB 0 R 0 N PD_INDIVIDUAL N N N N N N N N IS S

XP01 4 1 0 CORSUB 0 I 2 Y PD_ORDERS CRORDEX1 N N N N N N N N IS

XP01 5 1 0 NCOSUB 0 I 0 N PD_ORDERS CRORDEX1 N N N N N N N N IS S

XP01 6 1 0 CORSUB 0 I 2 N PD_INDIVIDUAL CRINDEX1 N N N N N N N N IS

Lets see this in action.

This is just a way to look at “explains”. You will have your way to look at them. Using a
BMC way.

XD entry here is the statement that I just passed to the optimizer to see what access
path it would choose for my statement. Focus on the cost, 663, that is from the cost
table. Below that is the access path query blocks, you see a scan (an R) followed by
index (I), scan, and another index access.

Now look at the XS entry – that is from the plan table after I did an explain using my
hints. That shows a cost of 409 and if you look at the query blocks, one tablespace
scan and three index accesses.

The last entry is our plan management that IBM provided a number of release ago. It
is what is keep in the catalog and directory. This product does an EXPLAIN PACKAGE
and you see in the other screen. The explain output shows the different HINTS used,
for catalog and directory explains it does update this column just so you know.

10

PLAN_TABLE
QUERYNO = 472
OPTHINT = IDUG1

PLAN_TABLE
QUERYNO = 472
OPTHINT = (IDUG1)
HINT_USED = IDUG1

How do I know if this is taking affect

SYSPACKSTMT
ACCESSPATH = H

SYSPACKAGE
OPTHINT = IDUG1

Review what is going on with Optimization Hints by updating the plan table.

We will see updating the plan table is required in other solutions but not by updating
the current query number
SYSPACKAGE

OPTHINT column contains the IDUG1
SYSPACKSTMT

ACCESSPATH column contains H
PLAN_TABLE

We updated OPT_HINT with IDUG1
HINT_USED column will also have IDUG1 if the hint was valid

Problems with this … what if plan table goes away and you need to rebind? But still
want that access path. Need a plan B.

11

• Optimizer Hints works for Static and Dynamic Statements
• Dynamic SQL uses Special Register

• SET CURRENT OPTIMIZATION HINT IDUG1

• Uses CURRENT SQLID to find the Plan Table

• +394 Statement Hint found and used, +395 invalid Hint, not used

• How is Db2 match the statement to the plan table (static or dynamic)
• Matching is based on following key fields

• QUERYNO, APPLNAME,PROGNAME,VERSION,COLLID,OPTHINT

• Ugh … so if keys don’t match?
• You can code QUERYNO in your statements

Some Good News and some Bad News

Hold the phone … matching on queryno, applname, …. Opthint – get that from the
rebind, go it. That could mean I could have many opthints and just change at bind
time. Could be cool. But what if I change the code that could cause the queryno to
change. You are right, you would lose the hint on new query numbers. Taking it to
dynamic SQL, how can that work?

12

• PreReq
• ZPARM OPTHINTS = YES

• New user table required DSN_USERQUERY_TABLE
• Let’s call this the BIG BOSS TABLE

• Statement to be “matched” must be created by BIND PACKAGE
• NO Create Function, Create Trigger, or Create Procedure

• Still supports Dynamic and Static

• Scope of the Optimization (new OPT Hint!)
• System Wide

• Any Version of a Collection and package

• Specific Version of a Collection and package

• Controlled by values in DSN_USERQUERY_TABLE

Let’s do better - Specify access path matching by Statement

Along comes Db2 V10 and V11 and we can make these statement level access path
changes better. And lets add some additional way Db2 can help.

CREATE statements for the tables and associated indexes in members DSNTESC and
DSNTESH of the prefix.SDSNSAMP library.

Statement level hints were added in DB2 V10. It was a completely new method of
providing hints. Based on the access paths kept within the Db2 Catalog.

13

QUALIFIER: TABLE=MKTCWR.DSN_USER..RY_TABLE

Cmd Column Name ColNo Datatyp Length

----v----1----v----2----v----3----v----4----

QUERYNO 1 INTEGER 4

SCHEMA 2 VARCHAR 128

HINT_SCOPE 3 SMALLINT 2

QUERY_TEXT 4 CLOB 4

QUERY_ROWID 5 ROWID 17

QUERYID 6 BIGINT 8

USERFILTER 7 CHAR 8

OTHER_OPTIONS 8 CHAR 128

COLLECTION 9 VARCHAR 128

PACKAGE 10 VARCHAR 128

VERSION 11 VARCHAR 128

REOPT 12 CHAR 1

STARJOIN 13 CHAR 1

MAX_PAR_DEGREE 14 INTEGER 4

DEF_CURR_DEGREE 15 CHAR 3

DSN_USERQUERY_TABLE

All at the individual SQL Statement Level

1. Specifying Optimization Parameters

2. Specifying Access Paths

3. Overriding Predicate Selectivities

What can we change with this new Big Boss Table ?

CREATE statements for the tables and associated indexes in members DSNTESC and
DSNTESH of the prefix.SDSNSAMP library.

Statement level hints were added in DB2 V10. It was a completely new method of
providing hints. Based on the access paths kept within the Db2 Catalog.

14

• QUERYNO – Used as primary key

• SCHEMA – if SQL contains unqualified stuff – what is the Schema

• QUERY_TEXT – you guessed it, this is the statement you want to influence

• HINT_SCOPE – two choices, its binary

• 0 – system wide

• Only uses the statement and the schema

• 1 – Package-level

• Uses the Collection, Package, Version + the statement

• COLLECTION

• PACKAGE

• VERSION

• SELECTVTY_OVERRIDE (Y or N)

• ACCESSPATH_HINT (Y or N)

• OPTION_OVERRIDE (Y or N)

Insert your “statement” in the DSN_USERQUERY_TABLE

You can wildcard the VERSION.

QUERYNO Specify any value that does not correlate to PLAN_TABLE rows and does
not already exist in another DSN_USERQUERY_TABLE row. The QUERYNO value is
used only for the primary key of DSN_USERQUERY_TABLE.SCHEMA. If the SQL
statement contains unqualified object names that might resolve to different default
schemas, insert the schema name that identifies the unqualified database objects. If
the statement contains unqualified objects names because it might apply to different
schemas at different times, you must create separate hints or overrides for each
possible SCHEMA value. If the statement contains only fully qualified object names,
the SCHEMA value is not required. However, you can still insert a SCHEMA value to
help you identify that the hint relates to a certain schema.QUERY_TEXT.Insert the text
of the statement whose access path you want to influence. The text that you provide
must match the statement text that Db2 uses when binding static SQL statements
and preparing dynamic SQL statements.
HINT_SCOPE Insert a value to specify that context in which to match the statement.
SELECTVTY_OVERRIDE Specify a value to indicate whether selectivity overrides are
specified. Unless you specifically want to enable both option overrides and selectivity
overrides for the same statement, specify 'N' in this column. If you want to specify

15

both types of overrides, specify 'Y’.
ACCESSPATH_HINT Specify a value of 'N' to indicate that no access path is specified.
You cannot specify both access paths and selectivity overrides for the same
statements.
OPTION_OVERRIDE Specify a value of 'Y' to indicate that statement-level optimization
parameters are specified.

SELECTVTY_OVERRIDE is for predicate selectivities
ACCESSPATH_HINT is for a hint that is in the plan table – this is stand alone, you can
not combine that with either of the other overrides
Option_overirid is for statement-level optimization parameters.

15

• Some information about that SQL statement you are adding …
• Db2 modifies the statement by removing non-important information

• Application Defaults are important CCSID, DECIMAL POINT, STRING DELIMITER

• While not required
• PACKAGE, COLLECTION, VERSION will allow Db2 to use SYSIBM.SYSPACKSTMT

• If Multiple Versions and * is specified Db2 will use the smallest VERSION value

• Where do I get the QUERY_TEXT to use?
• Static

• DBRM / SYSIBM.SYSPACKSTMT

• Dynamic
• Dynamic Statement Cache

• Object Names and SQL Keywords need to be in UpperCase

Insert your “statement” in the DSN_USERQUERY_TABLE

For static SQL statements, and for dynamic statements that are prepared with the
DYNAMICRULES(BIND) option, specify the following columns that specify package
information for the statement in DSN_USERQUERY_TABLE:PACKAGE
COLLECTION
VERSION
These values are not strictly required. However, when these values are
specified, Db2 uses parsing information from the SYSIBM.SYSPACKSTMT catalog table
to modify the statement text. If the values are unspecified, or the matching package
is not found during the BIND QUERY processing, Db2 uses the values that are
specified in the application defaults module.
As part of the BIND QUERY process, Db2 validates that the package if specified,
contains matching statement text. If the statement text does not match, Db2 issues
message DSNT281I and the BIND QUERY command fails.
When multiple versions of the package exist, and you specify * for the value of the
VERSION column. Db2 uses package information from the SYSIBM.SYSPACKSTMT
catalog table that has the smallest value in the VERSION column to modify the
statement text. If other versions of the package use different options, it is possible
that for matching to fail for statements from the other versions.
When the package context is not specified in DSN_USERQUERY_TABLE, Db2 uses the

16

applications default module to modify the statement text. However, the statement
text is not validated against statements in a particular package.
When you populate the QUERY_TEXT column in DSN_USERQUERY_TABLE, select the
parsed query text from the following locations:For static SQL statements, select the
statement text from the DBRM or from the SYSIBM.SYSPACKSTMT catalog table.
For dynamic SQL statements, select the statement text from the dynamic statement
cache. For statements that are eligible for replacement of literal values by the
ampersand symbol (&), extract the statement text after Db2 replaces literal values.
It is possible to specify the text directly in an INSERT statement (such as by copying
from the source code for your application).

It is possible to specify the text directly in an INSERT statement (such as by copying
from the source code for your application). However, that approach reduces the
likelihood of successful matching of statements to the hint.

16

• REOPT Bind Option

• Subsystem Parameters
• STARJOIN, PARAMDEG, CDSSRDEF, SJTABLES

• OPTION_OVERRIDE = Y

1. Specifying Optimization Parameters

STARJOIN subsystem parameter
PARAMDEG subsystem parameter (MAX_PAR_DEGREE column)
CDSSRDEF subsystem parameter (DEF_CURR_DEGREE column)
SJTABLES subsystem parameter

17

There are many ways to get the statement from dynamic cache but going to use this
to look at the statements based on package/program name. Here I have my
statement and I will cut and paste it to my update of the big boss table

18

I went to dynamic statement cache to find the statement I was interested in. and
copied that statement into the insert into the big boss table.

Made it system wide by setting the HINT SCOPE to 0.

This is not based on a static package so that is left blank.

Remember I am going for Option Override with this statement.

19

• Need DSN_USERQUERY_TABLE and PLAN_TABLE

• ACCESSPATH_HINT = Y
• Can have OPTION_OVERRIDE as well

• PLAN_TABLE Update

• DO NOT specify OPT_HINT

• BIND/REBIND Does not require OPTHINT keyword

• Use QUERYNO of Big Boss Table as the value QUERYNO in PLAN_TABLE

2. Specifying Access Paths at Statement Level

Here we are going to tell Db2 this is the access path I want you to use … you do that
by specifying the access path in the plan table.

With any of these “hints” you need to have the particular access path in some plan
table someplace. You typically can not just code up an access path, there are specific
data IBM provides in the plan table for it to work.

This the version of the old V6 Optimization Hints but a bit different where you don’t
need to match on query number.

20

Remember the old opt hints you needed the query number to match up the row in
the plan table to provide the hint. Here db2 is using the statement itself to match up.
But to get the statement I am copying the statement right from sys pack stmt.

21

Now that the big boss table is updated with a query no of your choice. Where is the
access path we want the statement to use. It is of course in the plan table.

Using query number 9999 … matches the statement with the plan table access path.
Yes both of these tables must have the same schema/owner.

22

• Takes the changes you have implemented in the Big Boss Table

• Inserts them where they will do the most good.

• BIND QUERY LOOKUP (YES|NO) EXPLAININPUTSCHEMA (‘schema name’)

• Only works if ZPARM OPTHINTS is YES

• BIND QUERY LOOKUP(NO) does the validation and inserts into “Query” Tables

• BIND QUERY LOOKUP (YES)
• Reads the Big Boss Table – DSN_USERQUERY_TABLE

• For every match it finds in the “Query” Tables

• Updates the QUERYID column in the DSN_USERQUERY_TABLE

• No rows are inserted

BIND QUERY … always the next step

Nothing happens until you execute the BIND QUERY statement. It takes the
information from our DSN tables

The important BIND QUERY command is BIND QUERY LOOKUP(NO) – doesn’t really
make sense but you LOOKUP NO.

EXPLAININPUTSCHEMA keyword comes into play when the tables such as DSN
USERQUERY or PLAN TABLE are different than the userid that is issuing the
commands.

23

DSNT281I BIND QUERY FOR QUERYNO=xxxx NOT SUCCESSFUL REASON CODE ….

I updated the big boss table, I added the access path to the plan table. Now I want to
implement my work.

On the direction of the big boss, going to pull the trigger and issue the bind query

Things can go wrong … and Db2 will tell you.

24

• Reads every row in DSN_USERQUERY_TABLE
• Might not want to leave stuff around

• If using ACCESSPATH – tries to match to PLAN_TABLE
• Too much data, might want to separate

• Reason for EXPLAININPUTSCHEMA

• Does require a high authority
• SYSADM, SYSOPR,SYSCTRL, System Level DBADM, SQLADM

• FREE QUERY
• Multiple ways to select what you want to free

• USERFILTER (group optimization)

• Package, QUERYID, ALL

• REBIND …

Some quick notes on BIND QUERY

Some notes on BIND QUERY … not a command we issue every day.

But what if we want to clean up stuff that is now in the catalog and get in our way
going forward?

FREE QUERY will remove entries.

25

• Static SQL Statements
• Rows in “query” tables are validated and applied when you REBIND the package

containing the statements

• Dynamic SQL Statements
• Validated and Enforced when the statements are prepared

• Check for SQLCODE +395 – something wrong
• ZPARM SUPPRESS_HINT_SQLCODE_DYN

That was just the set up … when do I get new access paths?

BIND Query did nothing else but put rows in the QUERY catalog tables. We have to
get them to help us.

26

27

No OPTHINT in Bind Statement

DSN SYSTEM(DJJ1)
REBIND PACKAGE(MKTCWR_COLLID.CRABCPK.(CMP-2500)) ENABLE(*)+

OWNER(MKTCWR) QUALIFIER(MKTCWR) VALIDATE(BIND)+
CURRENTDATA(NO) ISOLATION(CS) EXPLAIN(YES)+
DEGREE(1) KEEPDYNAMIC(YES) REOPT(NONE)+
DBPROTOCOL(DRDA) IMMEDWRITE(INHERITFROMPLAN)+
ENCODING(37) ROUNDING(HALFEVEN) PLANMGMT(EXTENDED)+
APRETAINDUP(YES) APREUSE(NO) APPLCOMPAT(V10R1)+
DESCSTAT(YES) CONCENTRATESTMT(NO)+
ARCHIVESENSITIVE(NO) BUSTIMESENSITIVE(NO)+
SYSTIMESENSITIVE(NO)

END
EXIT CODE(&LASTCC)
END

28

Proof points with rebinds … with my update to big boss table I did not provide a
version. So any rebind of any version of the package would pick up my access path.

In this version of the package the statement I needed to change was statement 474 –
save type of thing.

Notice however that the hint that was used to determine the access path points to
the catalog table SYSQUERYPLAN 225. 225 being the statement in that table.

29

DSN_USER_QUERY
QUERYNO = 100
QUERYNO = 9999

PLAN_TABLE
QUERYNO = 9999

SYSIBM.SYSQUERY
QUERYID = 224
QUERYID = 225

SYSIBM.SYSQUERYOPTS
QUERYID = 224

SYSIBM.SYSQUERYPLAN
QUERYID = 225

PLAN_TABLE
QUERYNO = 474
HINT_USED updated

SYSPACKSTMT
ACCESSPATH = H
QUERYID = 225
QUERY_HASH
QUERY_HASH_VER

Connection from DSN_USER_QUERY to SYSQUERY is lost once BIND QUERY LOOKUP
NO is run. That is why you might want to run LOOKUP YES

But this is a review of what is happening out there.

You need to make sure sysibm.sysquery is maintained or you can have stale stuff out
there.

30

• Overriding Predicate Selectivities … what?

• Allow users to set Filter Factors for certain predicates
• Tells DB2 Optimizer % of rows when predicate is applied

• For example: FF .1 says 10% of rows qualify

• We like small – good index choice

• Sometimes can’t get a Filter Factor / Default
• Host Variables / Parameter Markers

• Expressions, Subqueries

There is one more Access Path Influencer …
3. Overriding Predicate Selectivity

Uses the Big Boss Table
DSN_USERQUERY_TABLE
DSN_PREDICAT_TABLE
DSN_PREDICATE_SELECTIVITY

BIND QUERY populates
SYSIBM.SYSQUERY,
SYSIBIM.SYSQUERYPREDICATE
SYSIBM. SYSQUERYSEL

you can override these default filter factors for certain predicates by creating
selectivity overrides. Each predicate selectivity override describes the selectivity of a
particular predicate in a particular SQL statement. When a statement contains more
than one predicate, you can create separate selectivity overrides for each predicate in
the statement.
A statement that is issued many times might have different filtering characteristics at
different times. A predicate that filters many rows with one literal value might filter
far fewer rows when the literal value is different. Therefore, a single set of overrides
for a statement might not adequately describe the filtering of the predicates across
all executions. So, you can create more than one set of overrides for each statement.
Each set of overrides is a selectivity instance. Each selectivity instance has a weight
value. The weight value represents the percentage of executions of the statement in
which you expect that the predicates to have the selectivities of that instance.

Some typical defaults:
• COL=constant 0.04
• COL<>constant 0.96
• COL op constant 0.33
(where op means >, <,<=etc.)

31

• COL LIKE constant 0.10

31

• Run an explain on the object you are interested in changing FF

• Suggest create a new
• PLAN_TABLE, DSN_PREDICAT_TABLE, DSN_PREDICATE_SELECTIVITY

To use this one … need to understand what Db2 does for us

Lets look at predicates of a statement and what the optimizer does with these guys

When we do a rebind, prepare a dynamic statement – the optimizer will externalize
what it looked at to come up with an access path.

So lets start with the predicates that a statement uses. All that filter factor or
selectivity factor. And a bunch of other stuff which is good to know but I am not going
to cover in this presentation. Here I have 11 predicates that you can see if you look at
the query.

32

After Explain DSN_PREDICATE_SELECTIVITY

If I look at that query in the DSN Predicate Selectivity table (updated by Explain). You
might not have this table allocated in your system, but behind the scenes the
optimizer is looking at this … you will see actually 21 different predicate selections.
Why because sometime the optimizer makes some decisions and add more
predicates that make sense and help determine the access path.

33

Taking an easier statement – with two predicates.

Showing two predicates, turn into three predicate selections

For predicate two, the optimizer has assigned a filter factor of 33% meaning 33% of
all rows in that predicate will selected. 33% is a default filter factor because I have a
range predicate and a column expression.

I might know better and could get a different path is I was to change the filter factor.

34

Db2 Explain will populate (if exists):
DSN_PREDICAT_TABLE
DSN_PREDICATE_SELECTIVITY

35

• What am I updating?

• Insert new rows for this query
• INSTANCE

• SELECTIVITY

• WEIGHT

• ASSUMPTION

Lets think why are we doing this in the first place. The filter factor the optimizer is
using is not the best value because the data tells a different story.

It could be the data tells multiple stories. What these inserts tell you. This predicate
has three different scenarios. One scenario is 5% of the data qualifies for that
predicate 50% of the time. 1% of data qualifies 25% of the time. The rest of the time
use the defaults.

36

• Don’t forget the Big
Boss Table

First needed to override the predicate selectivity table … but the big boss table is
always involved. What statement are you changing?
Global?
Select the Selectivity Override

37

REBIND PACKAGE(MKTCWR_COLLID.CRBMCPK)

BIND Query, REBIND Package, Proof Points

Notice BIND Query will process all the rows in the Big Boss Table. So could have
duplicates and get new query numbers.

38

DSN_USER_QUERY
QUERYNO = 2222

DSN_PREDICAT_TABLE
QUERYNO = 2222

SYSIBM.SYSQUERY
QUERYID = 232

SYSIBM.SYSQUERYPREDICATE
QUERYID = 232

SYSIBM.SYSQUERYSEL
QUERYID = 232

PLAN_TABLE
QUERYNO = 532
HINT_USED updated

SYSPACKSTMT
ACCESSPATH = H
QUERYID = 232
QUERY_HASH
QUERY_HASH_VER

DSN_PREDICATE_SELECTIVITY
QUERYNO = 2222

CRBMCPK STMT 532
EXPLAIN

PLAN_TABLE
QUERYNO = 532

DSN_PREDICAT
QUERYNO = 532

DSN_PREDICATE_SELECTIVITY
QUERYNO = 532

Review …

39

• Extended Plan Management Policy – REBIND PLANMGMT(EXTENDED)
• REBIND SWITCH

• APREUSE(WARN|ERROR)
• Create Hints to try to reuse old access paths

• APREUSE set at HINT_USED

• SYSPACKSTMT column ACCESSPATH = ‘A’

• APCOMPARE(WARN|ERROR)

• Dynamic SQL plan Stability
• Identifying dynamic SQL statements to stabilize

• Stabilizing Access paths for dynamic SQL Statements

• START DYNQUERYCAPTURE / STOP DYNQUERYCAPTURE

• Invalidation of stabilized SQL

Brings us to protection … a little insurance we call in the biz
Prevent Access Path Changes

When you enable dynamic SQL plan stability, Db2 stores statement cache structures
for specified dynamic SQL statements in the Db2 catalog. Whenever a stabilized
dynamic SQL statement is not present in the dynamic statement cache when
issued, Db2 can load the statement cache structures from the Db2 catalog and avoid
the full prepare operation. The goal is to achieve access path stability comparable to
static SQL statements for repeating cached dynamic SQL statements.

However, stabilizing dynamic SQL statements involves tradeoffs. Access path changes
often improve performance, so you trade away those potential performance
improvements for stability. The stabilized dynamic SQL statements also use storage
space in the Db2 catalog to store the run time structures.

40

1. PLAN_TABLE access path hints

2. Statement-level access paths or parameters for a specific version,
collection, and package.

3. Statement-level access paths or parameters for a specific collection
and package.

4. Statement-level access paths or parameters that have a system-
wide scope.

5. Statement-level access paths that are created internally by Db2 for
access path reuse

6. Statement-level predicate selectivity overrides

Db2 applies only one method – order the are considered

41

• Might want to know how to do this before there is a crisis

• These “hints” can be come stale

• Want to monitor and limit the use

• With OPTHINT not required on REBIND – need to mine the catalog

• Good practice to manage Big Boss Table – DSN_USERQUERY_TABLE

• Have a best practice

• Remove once bound / move to history table

• There are limitations – not all hints actually work

Couple of Final Thoughts

When you enable dynamic SQL plan stability, Db2 stores statement cache structures
for specified dynamic SQL statements in the Db2 catalog. Whenever a stabilized
dynamic SQL statement is not present in the dynamic statement cache when
issued, Db2 can load the statement cache structures from the Db2 catalog and avoid
the full prepare operation. The goal is to achieve access path stability comparable to
static SQL statements for repeating cached dynamic SQL statements.

However, stabilizing dynamic SQL statements involves tradeoffs. Access path changes
often improve performance, so you trade away those potential performance
improvements for stability. The stabilized dynamic SQL statements also use storage
space in the Db2 catalog to store the run time structures.

42

Speaker: Chad Reiber
Company: BMC Software
Email Address: Chad_Reiber@bmc.com

Don’t forget to fill out a session evaluation!

In 1983 Chad Reiber started in IT with AT&T as a developer of data generator
software. From there he moved into the database arena as a database administrator
for IMS, IDMS, and Db2. Chad has been working with Db2 since 1987. Chad began
working for BMC Software in 1997 as a Software Consultant and primarily supports all
aspects of BMC’s Mainframe products for the Northeast Db2 community.
My email address is chad_reiber@bmc.com and my twitter account is @creiber11

43

