
Db2 for z/OS Performance
Improvement Opportunities

Akiko Hoshikawa, IBM

Db2 for z/OS

Disclaimer
• IBM’s statements regarding its plans, directions, and intent are subject to change or withdrawal without notice and at IBM’s sole

discretion.
• Information regarding potential future products is intended to outline our general product direction and it should not be relied on in

making a purchasing decision.
• The information mentioned regarding potential future products is not a commitment, promise, or legal obligation to deliver any

material, code or functionality. Information about potential future products may not be incorporated into any contract.
• The development, release, and timing of any future features or functionality described for our products remains at our sole discretion.
• Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual

throughput or performance that any user will experience will vary depending upon many factors, including considerations such as the
amount of multiprogramming in the user’s job stream, the I/O configuration, the storage configuration, and the workload processed.
Therefore, no assurance can be given that an individual user will achieve results similar to those stated here.

• Performance improvement outside of
”out of box” improvement.

• Out of box improvement = internal
optimization that you get
automatically by migrating to new
releases or updating the maintenance
or simply REBIND

• Sharing as a Good materials ,
something old that you have heard
but forgotten, something new that
you might have not yet heard.

• Will not contain in 1 hour slot

• Let me know the feedback if you like
the format, and I should continue to
maintain this..

• Out of the box improvement
= enabled as default such as
• Partial decompression
• Xproc
• Async XI
• Access path improvement

Improvement Opportunity

CPU time improvement

System Level

Application Level

Response time improvement

Scalability and Resiliency
improvement

CPU Improvement Opportunity

• General CP usage reduction
• IDAA

• Offload eligible queries VS trade off on data maintenance
• IDAA modeling feature to understand the saving

• Integrated synchronization reduced the cost of
incremental updates

• zIIP eligible work
• Java application
• CPU parallelism

• Be aware of aggressive parallelism degree
• Cost of enabling parallelism

• Db2ZAI
• SQL optimization provides access path and

runtime improvement for eligible queries
• Trade off between improvement vs. data

collection
• Likely eligible queries can be found though

IBM provided catalog/plan table queries

• Selective Db2 features
• System level

• Expanded LRSN – write intensive app
• Statement stability
• zSort acceleration
• Sort and sparce index memory
• Fast Traverse Blocks
• Buffer pool options

• Application level
• Basic application cost Reduce the number of columns
• Release Deallocate, High performance DBATs, CICS

thread reuse, IMS connection pooling
• Index options
• Overflow avoidance
• DGTT

CPU time improvement

System Level

Application Level
Response time improvement

Scalability and Resiliency
improvement

Reference : Db2 for z/OS V11 & 12 Language / API CPU Cost Comparison
Using IBM Relational Warehouse Workload (IRWW)

Language/API Base CPU/Tran Cost Billable CPU/Tran
Cost after zIIP redirect

COBOL Stored Proc 1X (BASE) 0.74x

C Stored Proc 1.02x 0.75x

SQLJ Stored Proc 1.71x 1.16x

JDBC Stored Proc 2.19x 1.54x

Native SQL Stored
Proc

1.07x 0.47x

• IRWW : very simple online
transaction workload

• Measured with z14
processors in non-data
sharing environment

• Stored Procedures are called
from IBM Type 4 JCC driver
Client – clients on zLinux

• zIIP benefit is applicable
only for remote Store
Procedures called via TCP/IP
DRDA

CPU Improvement Opportunity
System CPU time

CPU time improvement

System Level

Application Level

Response time improvement

Scalability and Resiliency
improvement

CPU - System level : Extended log RBA/LRSN

• What it is : Extended LRSN : 10-byte log sequence number
• BSDS, Db2 catalog and user objects
• V12 requires BSDS to be 10-byte format

• Why : CPU reduction by eliminating LRSN spin
• Update intensive objects in data sharing environment should be converted to 10-

byte LRSN to avoid LRSN spins completely

• Introduced in V11 6-byte to
10-byte format for both RBA
and LRSN
• BSDS, Db2 catalog and

user objects
• Workfiles are always 10

byte format
• Once the RBA/LRSN reached

the soft limit, results in failed
updates.

• V12 requires BSDS to be
converted to 10-byte
extended format at the
migration

• 10-byte LRSN in data sharing
can avoid LRSN spin
completely to generate
unique LRSN
• No need to spin for RBA
• 16 microseconds to 1

picosecond)

Notes:
LRSN spin can be
observed in the
service fields in
statistics
• QJSTSPNN
• QJSTSPNI

6 byte
LRSN (V10)

6 byte
LRSN(V11)

10 byte
LRSN
(V11/V12)

CPU - System level : Dynamic Statement Stability

• What it is
• Capture a prepared dynamic statement in Db2 catalog to be reused once

cached statements are stolen from statement cache
• Introduced at V12 function level 500

• Why
• Stabilize the access path of critical dynamic applications
• Loading from catalog can be cheaper than full-prepare

• Considerations
• Maintenance of SYSDYNQRY catalog table

• Introduced in V12 function level
500

• CACHEDYN_STABLIZATION
• BOTH (default)

• START DYNQUERYCAPTURE
command to define the scop

• DISPLAY DYNQUERYCAPTURE
command to monitor

• FREE STABLIZED DYNAMIC
QUERY command to free the
captured statements

0

0.05

0.1

0.15

0.2

0.25

Complex STMT Simple STMT (*100)

SE
CO

N
D

CPU time Comparison

Full prepare Load from catalog

CPU saving from more memory - z15 Z Sort Acceleration

• What it is :
• z15 Sort accelerator uses SORT LIST (SORTL) instruction to perform

sort with multiple input list, exploited by
• DFSORT & Db2 REORG invoking DFSORT
• Db2 RDS sort

• Why :
• REORG TABLESPACE utility UP to 12% CPU saving and elapsed time

saving was observed
• Db2 APAR PH28183 & UTILS_USE_ZSORT zparm YES
• Requires more member during SORT phase (up to 2x observed)

• Db2 RDS sort exploitation of SORTL
• APAR PH31684
• Enabled automatically for ORDER BY and GROUP BY when the condition met

• When z15 is detected and row size is small enough – seen average 8% (0 to 30% range) CPU
saving for sort intensive queries

• Db2 will use up to sort pool size (SRTPOOL zparm). Larger SRTPOOL, better CPU saving

• IBM z15 includes a new coprocessor
called the Integrated Accelerator for
Z Sort, which is driven by the new
SORT LISTS (SORTL) instruction.

• z/OS DFSORT and Db2 REORG utility
and Db2 RDS sort take advantage of Z
Sort.

• Available now on z15 with z/OS
DFSORT APAR PH03207, PTFs
UI90067, and UI90068 for z/OS V2R3
and V2R4.

• Db2 REORG APAR PH28183

• How to enable
• OPTION ZSORT in DFSORT

control statement or
ICEMAC/PRM

• Db2 zparm UTILS_USE_ZSORT
= YES (NO as default)

• Consideration – requires more
memory during sort phases

• Db2 RDS APAR PH31684
• Enabled automatically when

conditions are met
• Recorded in IFCID 96 and

statistics

CPU saving from more memory - Sort and sparse index

• What it is : In-memory sort
• zparm MAXSORT_IN_MEMORY
• Max value for in-memory sort operation per thread

• Operate RDS SORT in memory instead of materializing in workfile
• Very hard to estimate – start with 2-8MB to observe the improvement (CL2

CPU time improvement with ORDER BY/GROUP BY queries)

• What it is : sparse index data cache
• zparm MXDTCACH
• Max value for data caching for sparse index operation

• Showing noticeable CPU reduction (10-20% range) in eligible queries with larger
spare index cache value

• Watch statistics QXSISTOR THE NUMBER OF TIMES THAT SPARSE INDEX WAS
DISABLED BECAUSE OF INSUFFICIENT STORAGE and increase the default as
needed

• MAXSORT_IN_MEMORY
• 1M to SRTPOOL size, default is

1MB
• Max allocation of storage for a

query with sort to use in-memory
processing

• Monitor the usage in the statistics
• Field Name: QISTSISC
• CUR STOR (SORT) IN-MEM (KB)
• The total space used for currently

active in-memory work files
created bythe SORT component.

• MXDTCACHE
• 0-512 default 20MB
• Max amount of memory in MB to

be allocated for data caching for
each threads to access sparse
index during join.

• Check if there are queries with
PRIMARY_ACCESSTYPE = “T” or
JOIN_TYPE=“P”

• IFCID 27 for detail recording

• Monitor increase of memory usage using
statistics IFCID 225 64bit shared storage
QW0225ShrStg_Real

•

How it works?

• FTB is outside of buffer pools.

• FTB structure contains root and
non-leaf information and memory
efficiency compared to the pages
in the buffer pools.

• Once there are enough traversal,
Db2 creates Fast Traverse Block

• The query predicate evaluation
can access FTB directly with a
smaller number of getpages.

• In this particular case, the
getpage from index will be
reduced from 3 to 1.

• In addition to random select, FTB
can be effective to random index
access for insert, update or delete
with small numbers of structure
modification

SELECT .. FROM .. WHERE key = 100 ;

ROOT

Non-Leaf B

Leaf – 8 High-key 400
Low-key 361

:
Leaf – 4 High-key 200

Low-key 121

Non-Leaf A
Leaf – 3 High-key 120

Low-key 91
:

Leaf – 1 High-key 40
Low-key 1

Leaf 1 Leaf 3

Key RID
120 23
:

100 20
:
91 18

Key RID
40 10
:
1 8

Key RID
200 30
:

121 24

Leaf 4

Data page
20

Level 3

Level 2

Level 1

Index is
eligible for

FTB

High Key 400 … Leaf 10

....

High Key 120 … Leaf 3

High Key 40 … Leaf 1

Fast Traverse Block

With zparm INDEX_MEMORY_CONTROL = AUTO

CPU saving from more memory - FTB (Fast Traverse Blocks)

Where to Look & Expectation

• Benefit shows as
• Accounting Class 2 CPU time & GETPAGE reduction

• Cost shows in Statistics
• DBM1 SRB (zIIP) time, possibly IRLM SRB time and NOTIFY

Accounting
CL2 CPU time

Accounting IX BP
GETPAGE count

Statistics CPU
DBM1 zIIP time

• Improvement from FTB should be
visible in the accounting as class 2
CPU time (= Db2 CPU time)

• If FTB is effective, numbers of
getpages from index buffer pools
should be reduced as well

• Once FTB is enabled, the daemon
tasks monitors candidates and
create/drop FTBs. This is accounted
in DBM1 address space CPU time and
100% eligible for zIIPs.

• In data sharing environment, creation
and index structure updates triggers
NOTIFY SEND/RCV increase and
possibly corresponding IRLM CPU time

Statistics NOTIFY&
IRLM CPU time

CPU saving from more memory -FTB (2)

Reference : Latest Important Maintenance for FTB

APAR / PTF Correction for...

PH19484 / UI67068 Handling variable-length index keys with include columns

PH21916 / UI68631,
PH29336/ UI71351

PH36531/ (OPEN)

FTB p-lock handling at various index operations in data
sharing environments

PH25801 / UI70116 Timing window between mass-delete and FTB creation

PH26109 / UI70271 Error handling of SYSIBM.SYSINDEXCONTROL entries

PH26845 / UI70523 Avoid a loop in insert/delete against the index with FTB

PH28182 / UI71784
Improved index look-aside with FTB when the index is
updated sequentially for SQL insert or delete operations

PH35596 / UI74814 Handling a timing issue during creation of FTB in data
sharing environments

• List of the most important FTB
related APARs to apply, at the
time of writing. It is not a
comprehensive list of the
APARs and PTFs with FTB,
however, if you apply them, all
other relevant APARS and PTFs
will be pulled in.

• Highly recommend to use the
up-to date maintenance to
utilize FTB feature.

• FTB FIXCAT DB2FTB/K

https://community.ibm.com/community/user/hybriddatamanagement/blogs/paul-mcwilliams1/2020/10/08/new-look-ftb-db2-12

Db2 for z/OS News from the Lab : search with #Db2Znews
Take a new look at fast index traversal (FTBs) in Db2 12

https://www.ibm.com/support/pages/apar/ph19484
https://www.ibm.com/support/pages/apar/ph21916
https://www.ibm.com/support/pages/apar/ph29336
https://www.ibm.com/support/pages/apar/ph25801
https://www.ibm.com/support/pages/apar/ph26109
https://www.ibm.com/support/pages/apar/ph26845
https://www.ibm.com/support/pages/apar/ph28182
https://www.ibm.com/support/pages/apar/PH35596

CPU saving from more memory – Buffer Pool Parameters

• What it is : Buffer pool options
• Buffer pool simulation SPSIZE to determine reasonable VPSIZE

• Reduce numbers of I/O and increase residency time. sync I/Os and associated CPU
cost - use buffer pool simulation or adjust VPSEQT

• PGFIX(YES/NO)
• Page fix buffer pools – CPU saving during I/O & CF operations
• Use for buffer pool with high I/O intensity or with high rate of GBP operations

• FRAMESIZE (4K, 1M,2G)
• Large frames (1MB/2GB) – CPU saving during accessing the pages in buffer pools
• Use for buffer pool with high get page intensity

• PGSTEAL(NONE) – Further CPU saving during accessing the pages at in-
memory buffer pools
• Use for the object with high getpage intensity with steady size
• Object getpage intensity = GETPAGE per object (RTS) / NACTIVE
• An 8% class 2 CPU time reduction and a 7% reduction in elapsed time was observed for the

benchmark run that used PGSTEAL(NONE) compared to PGSTEAL(LRU).

• ALTER BUFFERPOOL command

• SPSIZE and SPSEQT
• Simulated additional

buffer pool size

• PGFIX (YES/NO)
• NO is default
• Page fix during I/O

operations

• FRAMESIZE (4K, 1M, 2G)
• 4K is default
• 1M/2G requires z/OS

LFAREA setup
• 1M/2G requires PGFIX =

YES
• 2G cannot be used for

PGSTEAL(NONE)

• PGSTEAL(LRU, FIFO, NONE)
• LRU as default

Reference : PGFIX (YES) and 1MB Page Frames

SIZE
Get
Page

Sync
Read

Pre-
Fetch Write

Hit
Ratio

I/O
Intensity

GP
Intensity

PG
Fix 1MB

BP0 3K 138 0 0 0.06 100% 0 5

BP1 524.3K 1496.3K 0.03 0 589 100% 0 285 Y Y

BP2 2097K 160.4K 404 0 402 100% 0 8

BP3 524.3K 93.6K 2101 35300 197 98% 7 18 Y Y

BP4 2097K 40.9K 9873 2530 433 76% 1 2 Y

• PGFIX (YES): recommended for high I/O intensity buffer pools – BP3 and BP4

• 1MB or 2GB page : recommended for high getpage intensity buffer pools, such as
BP1 & BP3

• Recommendation : use PGFIX(YES) and 1M or 2G frames for BP1, BP3 and use
PFGIX(YES) and any size of frames for BP4

• Run buffer pool simulation for BP4 to see SYNC read can be reduced

CPU Improvement Opportunity
Application level

CPU time improvement

System Level

Application Level

Response time improvement

Scalability and Resiliency
improvement

Reference – Basic cost of SQL

• Factors influences cost of a SQL statement
• Number of columns and types of columns

• TIMESTAMP > CHAR
• Number of indexes updated for insert/delete
• Number of rows qualifying

• Number of rows in table * product of FF of all predicates,where FF = Filter Factor
• Number of predicates evaluated
• Number of pages scanned

• Effectiveness of index and data look aside
• Number of rows scanned by Data Manager

• Number of rows in table * FF of chosen access path
• Number of rows returned

Reference – General Application Best Practice

General Application Programming
• Locking and concurrency - Be sensitive of isolation and holding the resource

• Transaction isolation should be CS unless necessary to use RR/or RS.
• JDBC uses the default as cursor with hold, which would hold the resource and threads across the commit boundary. Use

cursor without hold unless necessary
• Close the cursor, statements or connections as needed to release resources, locks and memory associated with.
• Do not use AUTOCOMMIT (ON), which is default of Java, but use frequently enough commit to release the locks.

• Use multi-row insert or update as needed to improve insert performance.
• Use parameter markers to match statement cache or literal replacement
• Retrieve only the needed columns - don't use SELECT * unless necessary
• Don't use the mismatch data type between Java and Db2

General Application Monitoring
• Set ClientInfo to record the granular accounting info to identify the transaction
• Monitor long running UR and readers via Db2 messages:

• DSNR035I that is controlled by URCHKT
• DSNB260I through LRDRTHLD
• DSNJ031I URLGWTH.

• Monitor timeout and deadlock messages OR use IFCID 196 (TIMEOUT record) and IFCID 172 (DEADLOCK record) in the
statistics to review contention for resources, packages, statements, holders, and types of locks.

CPU - Application Interface : Thread Reuse & Release Deallocate

• What it is : RELEASE (DEALLOCATE) BIND/REBIND option
• Keep resources across commit
• Effective combined with CICS or IMS thread reuse or batch applications
• DDF High Perf DBATs are introduced in Db2 10

• Why?
• Combined with thread reuse, eliminate the copy processing for

package, parent locks, statement execution information
• Range of a few % to 15% CPU saving for frequently executed

transactions

• Consideration
• Challenge in REORG, REBIND, DDL

• Break-in through PKGREL_COMMIT, then REBIND phase - in

• REL(DEALLOCATE) keeps
resources across commit. they
are,

• Table space or partition
locks

• Packages
• Statements for static
• Lookaside, prefetch tracing

• V11 introduced
• Break-in
• internal optimization to

avoid degradation due to
accumulated information

• V12 Function level 505
introduced

• REBIND phase-in

• Details are Deep Dive into
RELEASE(DEALLOCATE) and
KEEPDYNAIC(YES) in 2012 NA
IDUG by Akiko Hoshikawa

CPU saving – Index Option

• What it is : INCLUDE non-key columns in a unique index
• Include additional columns that are not part of a unique constraint

• Why
• Reduce the number of indexes to improve INSERT
• Achieve index-only access

• What it is : EXCLUDE NULL KEYS
• Suppress including NULL rows from indexes

• Why
• Reduce INSERT, Utility and index scan performance depending on the ratio of NULL

value
• A case study with 50% NULL value -> 50% REORG index, 5-20% insert CPU time, 5-

10% select using the index

• INCLUDE index and EXCLUDE
NULL KEYS is introduced in V11
New Function Mod

• INCLUDE columns in a unique
index can be used to enable
index-only access.

• Default is INCLUDE NULL KEYS
and an index entry will be
created when every key column
contains the NULL value

• LASTUSED column in
SYSIBM.SYSINDEXSPACESTATS
to identify the indexes which are
used for “index access”, not for
insert

• Db2 11 also added pseudo index
clean up as a background task
to improve overall index
performance

• Enabled as default

1M Insert with Index

0
10
20
30
40
50
60

0 1 2 3 4 5

Number of Indexes

T
im

e(
se

c)

Elapsed CPU time

CPU saving – Index On Expression

• What it is : Stores the results of the expression in the index
• Why

• Orders of magnitude improvement if a predicate using such an
index

• Extra cost in index maintenance

Create INDEX
CREATE INDEX UPPER_NAME
ON emp
(UPPER (lastname, 'EN_US'),

UPPER (firstname, 'EN_US'))

Query

SELECT id FROM emp WHERE
UPPER (lastname, 'EN_US') = ‘SMITH'
AND

UPPER (firstname, 'EN_US') = 'JOHN'

• Introduced in Db2 9

• Significant CPU saving for
the matching application

• Extra cost in index
maintenance and not
suitable with heavily
updated indexes
• Load, Insert, Update on

key value, Rebuild
Index, Check Index, and
Reorg tablespace

• Not Reorg index as
expressions are
evaluated in Insert or
index rebuild

• Not eligible for zIIP
offload

CPU saving – Reduction of Overflow Records

• What it is :
Reduce overflow record creation through update statement by saving
enough space during the insert, LOAD or REORG.
• PCTFREE x% FOR UPDATE y% per object level or PCTFREE_UPD zparm

• X% free space per data page reserved by LOAD / REORG
• Y%. Free space per data page reserved by INSERT, LOAD
• FOR UPDATE -1 : Db2 to determine the value using internal RTS UPDATE history

• PCTFREE_UPD xx/AUTO is system default

• Why?
• Overflow record adds CPU time to access – extra locking and getpages.

Reduce the need of running REORG

• Overflow record (indirect
reference) is created during
UPDATE against variable
length rows or compressed
rows

• Impact caused by indirect
references

– Additional getpages,
potentially additional I/Os
to the overflow pages

– Lower clustering
– REORG TS is necessary to

remove indirect references

– PCTFREE FOR UPDATE is
introduced in V11 NFM

– Zparm PCTFREE_UPD

CPU saving – DGTT NOT LOGGED

• What it is : NOT LOGGED option – default is LOGGED
• DECLARE GLOBAL TEMPORARY TABLE dgtt NOT LOGGED

• ON ROLLBACK DELETE ROWS
• ON ROLLBACK PRESERVE ROWS

• Why
• Less CPU from log processing in DGTT updates

• >20% CPU/elapsed time improvement seen in DGTT INSERT, UPDATE or DELETE

• Faster rollback/error processing
• 60% elapsed time reduction rolling back 5 million insert (and CPU time from system

address space time)

• DGTT NOT LOGGED option was
introduced in V11 New Function
Mode

• Requires DECLARE statement
updates

• NOT LOGGED ON ROLLBACK
DELETE ROWS:
• This option specifies that

you do not want logging to
occur for this table, and
during ROLLBACK or
ROLLBACK TO SAVEPOINT,
all rows in the DGTT are
deleted if anychange was
made since the last COMMIT.

• NOT LOGGED ON ROLLBACK
PRESERVE ROWS
• This option specifies that

you do not want logging to
occur for this table, and
during ROLLBACK or
ROLLBACK TO SAVEPOINT,
the rows in the DGTT are
preserved as they

Elapsed Time Improvement Opportunity

CPU time improvement

System Level

Application Level

Response time
improvement

Scalability and Resiliency
improvement

Elapsed time Improvement Opportunity

• Integration with System Z
• zEDC and z15 on-chip compression
• Huffman compression
• zHylerwrite
• zHyperLink
• SMC-D
• Async Cross invalidation (enabled as default)

• Db2 features
• zLOAD
• Inline LOB
• IAG2

Response time (Elapsed time) – zLOAD

• zLOAD is supported
• CLI, JDBC, CLP
• Requires Data Server

Client V11.1 fix pack 1
or above

• Detail description in Db2 12

• https://www.ibm.com/docs/e
n/db2-for-
zos/12?topic=tables-
loading-data-drda-fast-load-
zload

• What it is : DRDA Fast Load (zLOAD)
• Execute Db2 LOAD utility statement from a remote client

program

• Why
• Quick and easy loading of data from files at remote locations

Response time (Elapsed time) – Inline LOB for mostly <32K LOBs

• CREATE or ATLTER TABLE INLINE
LENGTH on UTS
• INLINE to base table up to 32K

bytes

• Almost Completely Inline LOBs
• Save CPU and I/O

• Less objects, less
getpages, less I/Os for
both LOB table space and
LOB auxiliary index

• Dynamic prefetch can be
used

• Reduce DASD space
• No more one LOB per

page
• Inline portion can be

compressed
• Potential impact on SQLs which

does not touch LOBs

• Split LOBs
• A part of LOB resides in base and

other part in LOB TS
• Incur the cost of both inline and

out of line
• Index on expression can be used

for INLINE portion

• What it is
• Store all or a part of small LOB into a

base table

• Why
• Elapsed & CPU time reduction for

mostly inline LOB (mostly <32K length,
but a few LOBs are big)

• Not suitable for average length >32K

Elapsed time in random select

Response time (Elapsed time) – z15 On chip compression

• zEDC supported in zEC12 to z14

• Db2 user table LOB compression
requires,
• Db2 12 FL500 and above
• zEC12 GA2 and above with zEDC

Express feature
• UTS with COMPRESS YES attribute
• Total length of LOB must be larger

than defined page size

• To compress Db2 directory LOB requires
additionally,
• DSN6SPRM COMPRESS_DIRLOB YES

(NO is default)
• Using a customer’s data, we

saw up to 80 % page saved

• DSN1COMP to estimate the LOB
compression space saving

• The examples file types typically
compressed well
• DOCX, XML, some PDF

• The examples of file types typically do
not compress well
• JPG, PNG, PPT, XLSX

• What it is : zEnterprise Data Compression (zEDC) or z15 on chip compression
• LOB compression in V12 FL500
• Utility sequential files - output of COPY, UNLOAD, input of LOAD, input of RECOVERY

• Customer has seen 60-70% disk space saving
• Db2 Archive log
• Db2 trace in SMF (SMF streaming required)

• Why ?
• Disk space saving
• Elapsed reduction for accessing large objects which are compressed well

• z14 vs. z15 LOB compression
• Better Compression Rate with z15 z
• The set of various LOB shows average 32% better compression rate with z15 compared to z14,

results in better elapsed and CPU time processing LOB

0 20 40 60 80 100 120

TXT 10

TXT 50

TXT 100

PDF 25

PDF 100

DOCX 100

PDF

PPT

XML

MIXED DOC

Compression Ratio as % saving z14 and Z15

Z15 Z14

Reference : Db2 and Data compression (1)

Db2
Active

log

Archiv
e Log

Tables contain
Large Object

(LOB)

IndexIndex

Tables
Tables

Tables Table
Spaces

Archiv
e LogArchive

Log

Db2
Active

log
Active

log

Seq file
(COPY/UNLOAD

output, LOAD
input files)

CMPSC compression Db2 12 for z/OS

z/OS

zEDC or z15 On Chip

zEDC compression

zEDC compression

zEDC compression

Software compression

Db2 SQL access

Utilities (via DFSMS)

Db2 subsystem parameter
TS_COMPRESION_TYPE

• FIXED_LENGTH
• HUFFMAN

Compressed records are
compressed in Db2 logs

dictionary
dictionary

dictionary

SMF stream

SMF

zEDC compression

DFSMS

Each Db2 table space or partitions (up to 4K partition per
TS) contains own dictionary.
Dictionary size is usually set to 64k bytes

Elapsed time Improvement Opportunity – Huffman Encoding

• Huffman compression encoding is
introduced in Db2 12 function level
504 as system level option

• TS_COMPRESION_TYPE
• FIXED_LENGTH
• HUFFMAN

• Db2 V12 FL509 introduced object
level Huffman compression option for
easy transition

• Catalog update to indicate which
encoding TS is using

• PH34808 : DSN1COMP enhancement
to compare the estimate space saving
converting from FIXED_LENGTH to
HUFFMAN

• No support for partial decompression
and possible CPU degradation
depending on the queries

• What it is : TS compression algorithm introduced in Db2 12 and z14 above
• Zparm TS_COMPRESION_TYPE
• Observed 10-30% disk space saving with Huffman encoding

• Why
• Possible elapsed time saving for sequentially accessed objects
• Less need of disk and buffer pools

• Factors influencing the performance
• Compression ratio, data access pattern, ratio of SELECT and predicate list vs.

total numbers of columns, impact to APS and processor types

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

Table1 Table2 Table3 Table4 Table5 Table6 Table7 Table8 Table9 Table10

KB

REOG with Fixed Length and Huffman Compression

uncompressed data KB fixed length data huffman data

Reference : ZHYPERWRITE and ZHYPERLINK

z/OS
Db2

1

2

Metro Mirror (PPRC)

Primary Secondary

z/OS
Db2

1 2

Metro Mirror (PPRC) with zHyperWrite

Primary Secondary

REMOTE_COPY_SW_ACCEL = ENABLE/DISABLE
Active log under PPRC

SAN
FICON/zHPF

<16 μsec
>150,000 IOOPs/SEC

zHyperLink

IBM
z14/z15

CPC

DS8K

IBM
z14/z15

CPC

CFCF LINK

ZHYPERLINK= ENABLE/ACTIVELOG/DATABASE/DISABLE

100-120us

Sync I/O : DB read and Active log write

ZHYPERWRITE ZHYPERLINK

Elapsed time Improvement Opportunity – zHyperWrite

• What it is : zHyperWrite
• Utilize software control remote copy process for active log output in peer

to peer remote copy (PPRC) environment
• Zparm REMOTE_COPY_SW_ACCEL

• DISABLE/ENABLE (default is DISABLE)

• Why
• Elapsed time reduction for update intensive workload

• Applicable for PPRC
environment to speed up
active log write

• Parallel log write in primary
and secondary to reduce the
response time

• Customer's experiment
showing 20-40% elapsed
time saving for update
intensive batch applications

0 10 20 30 40 50

HyperWrite - Off

HyperWrite - On

per commit (ms)

LOCK/LATCH(DB2+IRLM)

DATABASE I/O

LOG WRITE I/O

OTHER READ I/O

OTHER WRTE I/O

UPDATE COMMIT

GLOBAL CONT.

CL2 CPU

NOT ACCOUNTED

• Customer example: running
multiple updates jobs with
20 updates per commit

• 43% Reduction in Update
Commit time and 40% DB2
elapsed time reduction

Elapsed time Improvement Opportunity – zHyperLink

• What it is : zHyperLink
• Reduce I/O latency for sync I/O for 4K pages cached in DS8K

• Data base sync read I/Os
• Active log write I/Os

• Zparm ZHYPERLINK

• Why
• Significantly cut down the I/O response time in Db2 transaction

• Data base read intensive workload (for read)
• Update intensive workload (for write)

• Latest updates
• ZHYPERLINK write is now supported for global mirror configuration with z/OS 2.3
• DFSMS and Db2 support the improvement of dual log write

• Trade off
• CPU time increase

• zHyperLink is a new short distance
mainframe link technology,
connecting directly between the CPU
and the I/O device.

• ZHYPERLINK
• DISABLE (default)

• ENABLE (read&write)

• DATABASE (read only)

• ACTIVELOG (write only)

• See the IDUG article for details
• https://www.idug.org/browse/blogs/b

logviewer?blogkey=1701882d-c5d4-
4819-9242-7f21f9a8d10a

• zHyerlink parallel log write support
• DFSMS OA57833, OA58134,OA59581

• Db2 12 PH29407

• FIXCAT HYPERL/K

Resiliency, Scalability Updates

CPU time improvement

System Level

Application Level

Response time improvement

Scalability and Resiliency improvement

Resiliency / Scalability Improvement Opportunity - DSMAX

• Concurrently open data set
• APAR PH27493/PH33238 : pro-actively close datasets that were only

opened for utility processing and prioritize closing utility-only datasets when
DSMAX is hit. Benefit is to keep the number of concurrently open data set
lower

• Future release of z/OS
• Consider to deliver the enhancement to move portion of below the bar

storage to above the bar
• Db2 to plan to exploit the feature

• Db2 APAR PH09189
• Reduce risk of hitting

DSMAX
• Increase the amount

of buffer prior to
hitting the DSMAX
limit to drive dynamic
close of datasets
earlier, allowing more
time for asynchronous
close processing to
occur

• Prevent application failure
when hitting DSMAX
• Drive synchronous

closes of datasets
prior to retrying the
open request

• Db2 APAR PH27493 (now APAR
PH33238)
• Proactively close datasets

that were opened for utility
processing

• Prioritize closing utility-only
datasets when DSMAX is hit

Resiliency / Scalability Updates

• Db2 tends to challenge z/OS limitation, especially with DRDA
clients
• Recent challenges exposed via DDF workloads

• PH34378 to reduce WML request for High performance DBATS

• PH35068 to reduce WML storage requests

• PH34200 to improve thread deallocation after hitting profile exception

• PH36114 (open) to reduce the impact from deallocation afer hitting
POOLINAC

• This can be mitigated by REALSTORAGE_MANAGEMENT OFF

• RACF related
• PH30164 to reduce Db2 latch contention class 10 (authorization latch)

• Recommendation
• Install the maintenance & Monitor using SMF 98 (High frequency throughput

statistics)

• Utilize Db2 granular statistics interval by STATIME_MAIN PH18658

• Db2 tends to challenge z/OS limitation,
especially with DRDA clients

• DDF CPU spikes due to z/OS SRM spin
lock contention – PH34378 is available
to reduce WML request for High
performance DBATS

• DDF CPU spikes due to z/OS VSMFIX spin
lock contentions – PH35068 is available
to reduce WML storage requests

• DDF CPU spikes due to z/OS RSM spin
lock contentions – PH34200 for profile,
PH36114 (open) for pool inac behaviod
change

• This can be mitigated by
Realstorage_management OFF

• PH30164 improves Db2 to release class 10
latch while invoking RACF during thread
termination
• FYI: OA60285 to correct GRS

orphaning cells which delayed
ENQ/DEQ processing

• RMF III CF related monitor triggered CPU
spikes due to IXLSHELL spin lock contention

• Resolved by z/OS OA58772 RSU2006

akiko@us.ibm.com

Thank you for joining the session!

Session code:

Speaker: Akiko Hoshikawa
Company: IBM
Email Address: akiko@us.ibm.com

Please fill out your session evaluation before leaving!!!!

