
|

Developer Best Practices for
Db2 Performance

Tony Andrews, Themis Inc.

1

Developer Best Practices for Db2
Performance

Tony Andrews

Themis, Inc.

Cross-Platform

2

3

Agenda

By the end of this presentation, developers should be able to:

• Understand the key areas that can cause performance issues
within applications, programs, and queries.

• Better understand DB2 optimization.

• Understand how DB2 application design affects performance.

• Better understand DB2 data distribution statistics, how they affect
performance, and how program code can take advantage of them.

• Understand good SQL coding practices, and how bad SQL coding
practices affect performance.

4

My Experience Shows

• That the majority of performance problems among applications
are caused by poorly coded programs, improperly coded SQL,
weak data distribution statistics, and database design.

• That most developers do not understand the performance issues
involved with SQL programming, where to start, or how to fix
them.

• The largest performance gains are often obtained from tuning
application code. The next performance gains are tweaking/adding
indexes and Runstat statistics.

• That a little bit of training, shop coding standards, and program
walkthroughs can totally change the culture of IT development
departments, and minimize performance issues and incident
reporting in production.

5

Experience Shows

That standards, guidelines, and walkthroughs saves CPU costs

and incident reporting in IT shops.

“There is always time for a 10 minute

walkthrough”

What Do We Look Into for Performance Issues?

• SQL / Program Code

• Statistics on Tables

• Physical Design

• System Tuning

Improving SQL performance can be done in one of at least 4 ways. System tuning
may be done to adjust the parameters under which the Db2 subsystem operates to
effectively match the workload. Altering system parameters, tuning temporary space,
and adjusting bufferpool sizes and thresholds are all examples of this type of tuning.
An appropriately tuned system can affect an improvement in performance. Most of
the time, however, other factors dominate a tuning scenario. The SQL itself must be
written in a way that may be processed efficiently by the database. An appropriate
level of statistics about the data must be gathered to tell the optimizer about the
nature of the data being accessed. Lastly, the way the physical objects are defined
must be aligned with the types of queries that are to be performed.

6

7

What Causes CPU in Db2?

• Buffer Manager

• Retrieval of pages into the buffer

• Managing Getpage requests

• Data Manager (Stage 1)

• Break up raw data into columns and rows and
filtering data

• Relational Data Services (Stage 2)

• Reformatting, transforming, calculating values
used in filtering. Typically 10% more CPU to
evaluate than Stage 1.

CPU is consumed my many layers of software within Db2. The code responsible for storing, retrieving and
filtering data for queries consumes the bulk of CPU related to application performance.

The Buffer Manager is responsible for managing the pages of data for various tablespaces and indexes inside Db2s
bufferpools. It determines if the requested pages are already in the bufferpool and if not issues appropriate
requests to retrieve the data from the underlying linear VSAM files that store data. Buffer Manager is not aware
of columns and rows of data, only the pages and page numbers. The more getpage requests that are necessary to
run an SQL statement, the more CPU will be consumed by Buffer Manager.

Data Manager (sometimes called “Stage 1”) is responsible for translating the raw data stored on pages into
columns and rows for a given query. As it is doing this, it can throw away some data that does not meet the
criteria of the WHERE clause. Predicates that are written in a fairly straightforward way can usually be evaluated
by Data Manager with relatively little expense.

Relational Data Services (RDS) is also referred to as “Stage 2”. Complex predicates that require data
transformation or computations will be evaluated by RDS rather than Data Manager. These “Stage 2” predicates
are much more expensive to resolve than “Stage 1” predicates. Additionally, RDS cannot make effective use of
indexes, so there is a risk of retaining data much longer that does not qualify for the query. It is obviously
desirable to write queries in a way that may be evaluated at Stage 1 rather than by RDS.

These layers of code will be discussed in detail in a later chapter.

8

What Causes CPU in Db2?

• Built-in Function Usage: Transformation of data for retrieval
• CASE statements (very expensive)
• Summarization for Column Functions
• Sorts
• User Defined Functions (UDFs)
• Stored Procedures
• Triggers
• Locking of data

• DEVELOPERS: Know what your programs are doing!
Know how much data is typically processed!
Have counts for all actions!

Use of Built-in functions (BIFs) in a query may also involve substantial CPU to
reformat or summarize data. In the case where BIFs are used in the WHERE clause,
this will almost always result in Stage 2 processing for that predicate. Among the
most powerful BIFs is the CASE statement which allows conditional logic to be done
inside an SQL statement. The CASE statement may also be one of the most CPU
intensive functions used in SQL. Care should be taken when using CASE to be sure
that it is being used appropriately.

User Defined Functions (UDFs) are custom functions written by programmers to
accomplish reformatting or summarization of data that cannot be done with Db2’s
BIFs. UDFs run in Workload Manager (WLM) address spaces and may involve
significant overhead to call and manage. Stored procedures can incur similar
overhead.

Any sorts use CPU. Stored procedures called during processing will use a percentage
of the overall CPU.

Are there any triggers being executed on table processing?

How much locking I taking place? Can it be minimized? Can the program execute
optimistic locking?

8

Reducing I/O in Db2

• Appropriate use of indexes

• Appropriate physical clustering of table data

• Appropriate partitioning

• Table compression. More rows per page.

More data in buffer pool memory

• Bufferpool tuning

• Early elimination of data from consideration (i.e. get a

good access path and no Stage 2 predicates)

Reducing I/O within Db2 is one of the easiest ways to improve the performance of
SQL within an application.

Creating appropriate indexes on columns or groups of columns that are commonly
used to identify needed data can significantly reduce the I/O and CPU needed to
retrieve a result.

It is also important that they Db2 system itself be configured optimally for the
workload that must be supported. One important component of system tuning is the
bufferpools. Bufferpools exist to reduce the amount of I/O needed by applications.
Bufferpools should be configured to allow for as much reuse of cached data as
possible. Objects may be grouped by sequential and random access patterns and the
settings of the pools adjusted accordingly. In some cases a system tuning effort can
reap significant rewards.

No amount of system tuning, however, can recover the resources wasted by a poor
database design or poor access paths generated by the Db2 optimizer. This
presentation focuses on optimization and tuning at the SQL level. In general, we

9

want the optimizer to generate an access path that eliminates as much data from
consideration as early as possible in the process.

9

10

The Db2 Optimizer

Catalog Statistics

Object Definitions

Access Path

Database Design.

Table Design

Indexes

Database Design.

Clustering Order

WHERE Predicates

especially

Host Variables vs Hard

Coded Values

Through the Data Manipulation Language (DML) the user of a Db2 database supplies the “WHAT”; that is, the
data that is needed from the database to satisfy the business requirements. Db2 then uses the information in the
Db2 Catalog to resolve “WHERE” the data resides. The Db2 Optimizer is then responsible for determining the all
important “HOW” to access the data most efficiently.

Ideally, the user of a relational database is not concerned with how the system accesses data. This is probably
true for an end user of Db2, who writes SQL queries quickly for one-time or occasional use. It is less true for
developers who write application pro-grams and transactions, some of which will be executed thou-sands of
times a day. For these cases, some attention to Db2 access methods can significantly improve performance.
Db2’s access paths can be influenced in four ways:

♦ By rewriting a query in a more efficient form.
♦ By creating, altering, or dropping indexes.
♦ By updating the catalog statistics that Db2 uses to estimate access costs.
♦ By utilizing Optimizer Hints.

Watch out for different RID pool sizing from production and test environments. The row id (RID) pool is used for
the RID sorts that accompany optimizer access path techniques such as list pre-fetch, hybrid join, and multi-index
access. These pool sizes may vary from production environments to test environments with typically more RID
pool sort area in production. This can at times cause the access path to be different in different environments

Other items affecting optimization: ♦ Buffer Pools, ♦ Rid Pools.

You can improve access path testing by updating the catalog statistics on your test system to be the same as your
production system.
There are various ways to accomplish this.
You can improve the accuracy of test access path by modeling the configuration and settings of your production
subsystem in your test subsystem. The test system uses values that you specify in profile tables for:
- processor configuration
- RID pool, Sort pool

- Buffer pool settings.

10

11

Stage 1 versus Stage 2 Predicates

• Stage 1 (Db2 Data Manager) is responsible for translating the data
stored on pages into a result set of rows and columns. Predicates
that are written in a fairly straightforward way can usually be
evaluated by the Data Manager with relatively little expense.

• Stage 2 (Relational Data Services) handle more complex
predicates, data transformations, and computations. These Stage
2 predicates are much more expensive for Db2 to resolve than
Stage 1 due to additional processing and additional code path.
Additionally, Stage 2 predicates cannot make effective use of
indexes.

Luckily: There are far less stage 2 predicates as of V11 and V12

Stage 1 = Sargeable

Stage 2 = Non Sargeable. Predicate processing by this RDS are of Db2 is much more
expensive than the RDS Stage 1 area. Additional processing, additional code path,
much more expensive then stage 1.

Indexable predicates evaluated first, Stage 1 predicates, next, and Stage 2 predicates
last.

Stage 2 Predicates
Use the Visual Explain in IBM Data Studio or query directly the

DSN_PREDICAT_TABLE to see any stage 2 predicates. Note

the filter factor information also.

1) Click on the FETCH box to see any/all predicates not associated with the index
chosen

2) Click on the IXSCAN boxes to see matching index and screening index predicate
information

12

Table Design

000010 HAAS …………..… A00
000020 THOMPSON …..… B01
000030 KWAN ……….…... C01
000050 GEYER …….……… E01
000060 STERN ……….…… D11
000070 PULASKI ……..…… D21
000090 HENDERSON ……. E11

000100 SPENSER ……… E21
000110 LUCHESI …..… A00
000120 O’CONNELL ..…. A00
000130 QUINTANA ….… C01
000140 NICHOLLS ….… C01
000150 ADAMSON.. ….… D11
000160 PIANKA ……….. D11

The number of columns per row has to do

with the number of rows per page has to do

with how much data gets in memory!

Buffer Pool (Memory)

Getpage

This is an example of the EMP table being in EMPNO primary key order.

13

14

What Makes an Inefficient SQL Query?
1). SQL statements have poorly coded predicates. Stage 2 and/or non indexable.

Db2 LUW has RESIDUAL Predicates

2). SQL is doing more work than is needed. For example:

- Sorts that are not needed

- Distinct / Group By / Order By that are not needed

- UNION versus UNION ALL

- Extra tables that are not needed

- Table not being joined to (causes Db2 to do its own joining called a

Cartesian join).

3). SQL not using an index, instead executing table scans

4). SQL not using an index to full capacity (Index scan, too much screening)

5). Extra columns / Extra rows being returned

Developers should review their own SQL code and make sure it is:
- Not doing more work than needed
- Not bring back more data (columns and/or rows) needed
- Not doing unneeded sorts

15

What Makes an Inefficient SQL Query?

1) Clean up the SQL statement

2) Possible rewrite of any predicate?

3) Possible rewrite of he SQL statement ?

4) Possible index addition or changes ?

Take out anything not needed is a start. Oftern time predicates can be rewritten
differently yet maintaining the same logic. This can have the optimizer come up with
a different filter factor for the predicate, and possibly change the optimization path
chosen

Often times there might be 3,4,5 different ways to write queries for the same result
set. And often times each may take a different optimization path than the others. If
a different optimization is chosen, then for sure a different runtime will occur. Could
be better maybe! It depends…

See the presentation and article from past conferences titles ‘ The Power of the SQL
Rewrite’.

16

What Makes an Inefficient Program
that Contains SQL?

Too many trips between the program code and Db2. Minimize the SQL

requests to Db2!! In general let Db2 do the work !!

Code relationally, not procedurally !!

This is huge in performance tuning of programs, especially batch programs
because they tend to process more data. Every time an SQL call is sent to the
database manager, there is overhead in sending the SQL statement to Db2,
going from one address space in the operating system to the Db2 address space
for SQL execution.

In general developers need to minimize:

- The number of time cursors are Opened/Closed
- The number of random SQL requests (noted as synchronized reads in

Db2 monitors).

V8: Multi Row Fetch, Update, and Inserting. Recursive SQL. Select from Insert.
V9: ‘Upsert’ processing. Fetch First / Order By within subqueries.

1) Minimize programming API (Application Programming Interface) to Db2. There is
overhead involved in API calls, no matter how efficient the call may be.

2) Minimize the number of fetches by using multi row fetch. Take advantage of multi
row deletes/inserts also.

3) Distributed Apps: Once in compatibility mode in V8 the blocks used for block
fetching are built using the multi-row capability without any code change. This
results in automatic savings for example distributed SQLJ applications.

17

Multi Row Fetch – Should be a Standard

When using cursors, use ROWSET positioning and fetching using multi row fetch,

multi row update, and multi row insert.

Db2 V8/V9 introduced support for the manipulation of multiple rows on fetches, updates,

and insert processing. Prior versions of Db2 would only allow for a program to process

one row at a time during cursor processing. Now having the ability to fetch, update, or

insert more than 1 row at a time reduces network traffic and other related costs associated

with each call to Db2. CPU is greatly reduced. Going across address spaces with requests

and the movement of data is expensive.

The recommendation is to start with 100 row fetches, inserts, or updates, and then

test other numbers. It has been proven many times that this process reduces

runtime on average of 35%. Consult the IBM Db2 manuals for further detail and

coding examples. At times up to 50% faster!

1) Check ‘Get Diagnostics’ only after receiving a SQLCODE <> 0
2) For multi-row fetch you get a +354 SQLCODE which says "one or more errors may

have occurred.“
3) For a non atomic multi-row insert you get a -253 if some of the rows fail, -254 if

all fail
4) For an atomic multi-row insert you get the real SQLCODE of the first failure (since

atomic means any failure backs out the entire insert), but you still need the
diagnostics to determine which row actually tripped the error.

5) If you get multiple errors, they will be returned in reverse order. e.g. when
inserting 5 rows, row no. 2 and row no. 4 had errors. GET DIAGNOSTICS shows
three errors (not two!) - first is the generic, 2nd is error for row #4 and third is
error for row #2.

6) If you perform a multi-row operation and receive an SQLCODE of 0 then you
generally have no need for GET DIAGNOSTICS, which is VERY expensive. So, check
SQLCODE first and only go to the DIAGNOSTICS when errors are encountered.

7) Multi Row for even a small number of rows returned can be beneficial. When
searching for a "break-even" (runtime), don't forget to take into consideration the
length of the data rows being fetched. Multi-row fetch will be especially
beneficial (even for just a few rows) if the rows are short in length.

8) Seen best results with large amounts of data being returned from a cursor.
Fetches of 100 rows each.

17

18

Generate the Following Report: EMP
Detail Data, Along with Aggregate Data

Detail data Aggregate Data

Not stating that this is the best option, but at times it may be. But it gives developers
another way to code for certain results.

Other Options:

1) SELECT E1.EMPNO, E1.LASTNAME, E1.WORKDEPT, E1.SALARY, X.DEPT_AVG_SAL

FROM EMPLOYEE E1 INNER JOIN
(SELECT E2.DEPTNO, DEC(ROUND(AVG(E2.SALARY),2),9,2)

AS DEPT_AVG_SAL
FROM EMP E2
GROUP BY E2.WORKDEPT) AS X ON E1.DEPTNO = X.DEPTNO

ORDER BY E1.WORKDEPT, E1.SALARY

2) WITH X AS
(SELECT E2.WORKDEPT, DEC(ROUND(AVG(E2.SALARY),2),9,2)

AS DEPT_AVG_SAL
FROM EMPLOYEE E2
GROUP BY E2.WORKDEPT)

SELECT E1.EMPNO, E1.LASTNAME, E1.WORKDEPT, E1.SALARY, X.DEPT_AVG_SAL
FROM EMP E1 INNER JOIN

X ON E1.DEPTNO = X.DEPTNO
ORDER BY E1.WORKDEPT, E1.SALARY

3) SELECT E1.EMPNO, E1.LASTNAME, E1.WORKDEPT, E1.SALARY, AVG(E2.SALARY) AS

DEPT_AVG_SAL
FROM EMP E1 INNER JOIN

EMP E2 ON E1.DEPTNO = E2.DEPTNO
GROUP BY E1.EMPNO, E1.LASTNAME, E1.WORKDEPT, E1.SALARY
ORDER BY E1.WORKDEPT, E1.SALARY

18

19

Query Example of a Program Coded
Relational vs Procedural

Take advantage of Scalar Fullselects within the Select clause whenever possible.

Many times the output needed from SQL development requires a combination of

detail and aggregate data together. There are typically a number of ways to code

this with one SQL, and the Scalar Fullselect provides a newer way to get both in the

same query. .

For Example: Individual Employee Report with Aggregate Department Averages

SELECT E1.EMPNO, E1.LASTNAME,

E1.DEPTNO, E1.SALARY, (SELECT AVG(E2.SALARY)

FROM EMP E2

WHERE E2.DEPTNO = E1.DEPTNO)

AS DEPT_AVG_SAL

FROM EMP E1

ORDER BY E1.DEPTNO, E1.SALARY

Not stating that this is the best option, but at times it may be. But it gives developers
another way to code for certain results.

Other Options:

1) SELECT E1.EMPNO, E1.LASTNAME, E1.WORKDEPT, E1.SALARY, X.DEPT_AVG_SAL

FROM EMPLOYEE E1 INNER JOIN
(SELECT E2.DEPTNO, DEC(ROUND(AVG(E2.SALARY),2),9,2)

AS DEPT_AVG_SAL
FROM EMP E2
GROUP BY E2.WORKDEPT) AS X ON E1.DEPTNO = X.DEPTNO

ORDER BY E1.WORKDEPT, E1.SALARY

2) WITH X AS
(SELECT E2.WORKDEPT, DEC(ROUND(AVG(E2.SALARY),2),9,2)

AS DEPT_AVG_SAL
FROM EMPLOYEE E2
GROUP BY E2.WORKDEPT)

SELECT E1.EMPNO, E1.LASTNAME, E1.WORKDEPT, E1.SALARY, X.DEPT_AVG_SAL
FROM EMP E1 INNER JOIN

X ON E1.DEPTNO = X.DEPTNO
ORDER BY E1.WORKDEPT, E1.SALARY

3) SELECT E1.EMPNO, E1.LASTNAME, E1.WORKDEPT, E1.SALARY, AVG(E2.SALARY) AS

DEPT_AVG_SAL
FROM EMP E1 INNER JOIN

EMP E2 ON E1.DEPTNO = E2.DEPTNO
GROUP BY E1.EMPNO, E1.LASTNAME, E1.WORKDEPT, E1.SALARY
ORDER BY E1.WORKDEPT, E1.SALARY

19

20

Query Example of a Program Coded
Relational vs Procedural

Or table expressions.

Many times the output needed from SQL development requires a combination of

detail and aggregate data together. There are typically a number of ways to code

this with one SQL, and the Scalar Fullselect provides a newer way to get both in the

same query.

For Example: Individual Employee Report with Aggregate Department Averages

SELECT E1.EMPNO, E1.LASTNAME, E1.WORKDEPT, E1.SALARY,

X.DEPT_AVG_SAL

FROM EMPLOYEE E1 INNER JOIN

(SELECT E2.DEPTNO, DEC(ROUND(AVG(E2.SALARY),2),9,2)

AS DEPT_AVG_SAL

FROM EMP E2

GROUP BY E2.WORKDEPT) AS X

ON E1.DEPTNO = X.DEPTNO

ORDER BY E1.WORKDEPT, E1.SALARY

Not stating that this is the best option, but at times it may be. But it gives developers
another way to code for certain results.

Other Options:

1) SELECT E1.EMPNO, E1.LASTNAME, E1.WORKDEPT, E1.SALARY, X.DEPT_AVG_SAL

FROM EMPLOYEE E1 INNER JOIN
(SELECT E2.DEPTNO, DEC(ROUND(AVG(E2.SALARY),2),9,2)

AS DEPT_AVG_SAL
FROM EMP E2
GROUP BY E2.WORKDEPT) AS X ON E1.DEPTNO = X.DEPTNO

ORDER BY E1.WORKDEPT, E1.SALARY

2) WITH X AS
(SELECT E2.WORKDEPT, DEC(ROUND(AVG(E2.SALARY),2),9,2)

AS DEPT_AVG_SAL
FROM EMPLOYEE E2
GROUP BY E2.WORKDEPT)

SELECT E1.EMPNO, E1.LASTNAME, E1.WORKDEPT, E1.SALARY, X.DEPT_AVG_SAL
FROM EMP E1 INNER JOIN

X ON E1.DEPTNO = X.DEPTNO
ORDER BY E1.WORKDEPT, E1.SALARY

3) SELECT E1.EMPNO, E1.LASTNAME, E1.WORKDEPT, E1.SALARY, AVG(E2.SALARY) AS

DEPT_AVG_SAL
FROM EMP E1 INNER JOIN

EMP E2 ON E1.DEPTNO = E2.DEPTNO
GROUP BY E1.EMPNO, E1.LASTNAME, E1.WORKDEPT, E1.SALARY
ORDER BY E1.WORKDEPT, E1.SALARY

20

21

Query Example of a Program Coded
Relational vs Procedural

Or multi table joins with GROUP BY

Many times the output needed from SQL development requires a combination of

detail and aggregate data together. There are typically a number of ways to code

this with one SQL, and the Scalar Fullselect provides a newer way to get both in the

same query. .

For Example: Individual Employee Report with Aggregate Department Averages

SELECT E1.EMPNO, E1.LASTNAME, E1.WORKDEPT, E1.SALARY,

AVG(E2.SALARY) AS DEPT_AVG_SAL

FROM EMP E1 INNER JOIN

EMP E2 ON E1.DEPTNO = E2.DEPTNO

GROUP BY E1.EMPNO, E1.LASTNAME, E1.WORKDEPT, E1.SALARY

ORDER BY E1.WORKDEPT, E1.SALARY

Not stating that this is the best option, but at times it may be. But it gives developers
another way to code for certain results.

Other Options:

1) SELECT E1.EMPNO, E1.LASTNAME, E1.WORKDEPT, E1.SALARY, X.DEPT_AVG_SAL

FROM EMPLOYEE E1 INNER JOIN
(SELECT E2.DEPTNO, DEC(ROUND(AVG(E2.SALARY),2),9,2)

AS DEPT_AVG_SAL
FROM EMP E2
GROUP BY E2.WORKDEPT) AS X ON E1.DEPTNO = X.DEPTNO

ORDER BY E1.WORKDEPT, E1.SALARY

2) WITH X AS
(SELECT E2.WORKDEPT, DEC(ROUND(AVG(E2.SALARY),2),9,2)

AS DEPT_AVG_SAL
FROM EMPLOYEE E2
GROUP BY E2.WORKDEPT)

SELECT E1.EMPNO, E1.LASTNAME, E1.WORKDEPT, E1.SALARY, X.DEPT_AVG_SAL
FROM EMP E1 INNER JOIN

X ON E1.DEPTNO = X.DEPTNO
ORDER BY E1.WORKDEPT, E1.SALARY

3) SELECT E1.EMPNO, E1.LASTNAME, E1.WORKDEPT, E1.SALARY, AVG(E2.SALARY) AS

DEPT_AVG_SAL
FROM EMP E1 INNER JOIN

EMP E2 ON E1.DEPTNO = E2.DEPTNO
GROUP BY E1.EMPNO, E1.LASTNAME, E1.WORKDEPT, E1.SALARY
ORDER BY E1.WORKDEPT, E1.SALARY

21

22

Data Statistics

Make sure the data distribution statistics are current in the tables being processed.

This is done by executing the Runstats utility on each specific table and associated

indexes. This utility loads up the system catalog tables with data distribution information

that the optimizer looks for when selecting access paths. Some of the information that

the Runstats utility can provide is:

- The size of the tables (# of rows)

- The cardinalities of columns

- The percentage of rows (frequency) for those uneven distribution of column values

- The physical characteristics of the data and index files. Rows / Pages etc.

- Information by partition

Pay attention to the ‘Statstime’ column in the catalog tables as it will state when the last

time Runstats has been executed on each table.

Volatile Tables - Db2 considers using Index access no matter the statistics

1) FREQVAL Statistics are important for any columns containing uneven distribution
of data values. For example some tables may contain a status code column
containing multiple values. If any of the values contains a high or low percentage of
rows In the table, then it should have FREQVAL statistics run on that column.

2) Statistics are typically up to date in production, but many time are behind or even
reset in test environments.

3) Volatile tables are always an issue. Statistics only reflect a point in time.
By declaring the table volatile, the optimizer will consider using index scan rather

than table scan. The access plans that use declared volatile tables will not depend on
the existing statistics for that table.

4) By creating a Global Temporary Table, manual statistics can then be added to the
catalog tables for the average number of rows, average cardinalities, etc…

23

Data Statistics

Make sure the data distribution statistics are current in the tables being processed.

1) FREQVAL Statistics are important for any columns containing uneven distribution
of data values. For example some tables may contain a status code column
containing multiple values. If any of the values contains a high or low percentage of
rows In the table, then it should have FREQVAL statistics run on that column.

2) Statistics are typically up to date in production, but many time are behind or even
reset) in test environments.

3) Volatile tables are always an issue. Statistics only reflect a point in time.
By declaring the table volatile, the optimizer will consider using index scan rather

than table scan. The access plans that use declared volatile tables will not depend on
the existing statistics for that table.

Db2 Runstats Utility

▪ Optimizer takes into account table statistics for access path
optimization

▪ Cardinality statistics should be generated for each column
that is used in ‘Where’ logic.

▪ Cardinality of total rows are generated for the table
▪ Frequency value statistics are great for data with very uneven

distribution of values (and used in ‘Where’ logic).

▪ Histogram statistics great for range type predicates
▪ Hard coding and/or dynamic queries needed to take

advantage of Frequency / Histogram statistics

The optimizer assumes that the data is uniformly distributed. Therefore, frequency
distribution statistics are needed on columns where there is a skew in the data values
that may cause poor decisions by the optimizer. Histogram helps data estimation
when certain data ranges have a lot of data and others are sparse (hot spots in data
across many values).

The best statistics do not help if the queries are optimized with host variables. At
times, queries need to have some hard coded values or have
the query executed dynamically.

24

Db2 Runstats Utility – Freqval Stats
Example: COMM column in EMP table has 31 values, but the value 0 is 99%
of the data. Frequency value runstats can load this information for Db2.
Developers have to code for it.

SELECT *

FROM EMP

WHERE LASTNAME LIKE ‘S%’

AND COMM = 0

SELECT *

FROM EMP

WHERE LASTNAME LIKE ‘S%’

AND COMM = ?

SELECT *

FROM EMP

WHERE LASTNAME LIKE ‘S%’

AND COMM = ?

AND COMM <> 0

The optimizer assumes that the data is uniformly distributed. Therefore, frequency
distribution statistics are needed on columns where there is a skew in the data values
that may cause poor decisions by the optimizer. Histogram helps data estimation
when certain data ranges have a lot of data and others are sparse (hot spots in data
across many values).

25

Db2 Runstats Utility – Histogram Stats
Example: DEPTNO has over 100 values,
and there are queries with ‘Range’ type
predicates often applied (Between, >, <,
Like).

SELECT COUNT(*) FROM EMP => 51,803

WHERE DEPTNO BETWEEN 'P00' AND 'P99'

SELECT LASTNAME FROM EMP

WHERE DEPTNO BETWEEN ‘P00' AND 'P99'

The optimizer assumes that the data is uniformly distributed. Therefore, frequency
distribution statistics are needed on columns where there is a skew in the data values
that may cause poor decisions by the optimizer. Histogram helps data estimation
when certain data ranges have a lot of data and others are sparse (hot spots in data
across many values). And especially when there are range predicates against the
column.

Histogram statistics are only good if the queries sent to the optimizer have hard
coded values or are dynamic, or are being REPOPT’d at runtime. Histogram statistics
will not help queries with host variables.

If no NUMQUANTILES is specified, Db2 will choose based on the cardinality of the
columns and number of rows up to 100 max. If you
know the application and the typical ranges that get executed, set the number

accordingly. For example, if many of the ranges get 5% or
less, then specify a higher number of quantiles. But if the range predicates are always

on a larger range, less quantiles is needed.

26

27

Db2 Runstats Utility – Histogram Stats

RUNSTATS TABLESPACE DTHM82.TS00EMP

TABLE(THEMIS82.EMP)

COLGROUP(SALARY)

HISTOGRAM NUMQUANTILES 20

RUNSTATS INDEX(THEMIS82.XEMP02)

HISTOGRAM NUMCOLS 1 NUMQUANTILES 20

For Indexed Columns or Column Groups

For ANY Column or Column Group

These two control cards gather the new histogram statistics. The first example gathers the
statistics on the leading column of the XEMP02 index (the DEPTNO column). Histogram
statistics break the data into ranges of values with an estimate of the percentage of rows
that fall into each range. The NUMQUANTILES option specifies how many ranges should be
used (or how much granularity will be present in the statistics). This number is only an
estimate, and it may be necessary for the utility to use a few more or less quantiles than
requested.

The second example gathers the histogram statistics on a non-indexed column. This
invocation of the utility requires a sort of the data to determine the appropriate groupings
making this collection rather expensive. Although this syntax may be used for indexed
columns, the syntax used in the first example should be used whenever possible to avoid
sorting.

It is possible to gather these statistics infrequently even if RUNSTATS is run regularly without
the HISTOGRAM option. When the HISTOGRAM option is not used, these statistics are not
overlaid in the catalog.

28

Db2 Runstats Utility – Histogram Stats

SELECT CHAR(NAME,18) AS NAME,

CHAR(STRIP(LOWVALUE,B),10) AS LOW,

CHAR(STRIP(HIGHVALUE,B),18) AS HI,

CAST (FREQUENCYF * 100 AS DECIMAL(5,2))

AS PCT_IN_RANGE

FROM SYSIBM.SYSCOLDIST

WHERE TBNAME = 'EMP'

AND TBOWNER = 'THEMIS82'

AND TYPE = 'H'

ORDER BY NAME, LOW

Histogram statistics are stored in SYSIBM.SYSCOLDIST with a TYPE code of “H”. This query
may be used to view and analyze histogram statistics for a particular column. The frequency
values are stored as floating point decimals, so this query converts them to decimals for ease
of viewing.

29

Db2 Runstats Utility – Histogram Stats

NAME LOW HI PCT_IN_RANGE
DEPTNO A00 E21 0.05

DEPTNO P01 P04 3.96

DEPTNO P05 P08 2.98

DEPTNO P08 P12 3.76

DEPTNO P12 P16 3.45

DEPTNO P16 P20 3.35

DEPTNO P20 P24 3.44

DEPTNO P24 P29 3.73

DEPTNO P30 P35 5.28

DEPTNO P35 P39 3.11

DEPTNO P39 P43 3.78

DEPTNO P43 P50 5.46

DEPTNO P50 P54 3.83

DEPTNO P54 P59 3.56

DEPTNO P59 P62 2.67

DEPTNO P62 P66 3.49

DEPTNO P66 P70 3.46

DEPTNO P70 P74 3.80

DEPTNO P74 P80 5.45

DEPTNO P80 P84 3.39

DEPTNO P84 P90 4.99

DEPTNO P90 P94 3.82

DEPTNO P94 P98 3.66

DEPTNO P98 P99 1.06

Here are the results of the SYSCOLDIST query. Note that the data is not evenly distributed
across the potential values.

30

Db2 Runstats Utility – Histogram Stats
SELECT LASTNAME FROM EMP

WHERE DEPTNO BETWEEN 'P00' AND 'P99'

With XEMP02

Histogram Stats

Queries that use range predicates (<, >, BETWEEN, LIKE) are most likely to take advantage of
available histogram statistics. This example shows a query retrieving all employees for
departments less than or equal to “M99”. The access path graphs from Optimization Service
Center reflect the access path before and after the addition of histogram statistics on the
DEPTNO column. Without the histogram statistics, the optimizer only knows the LOW2KEY
and HI2KEY of the column and uses an interpolation formula to estimate the number of
records that will be returned. This estimate is 5,699 rows out of 51,834 rows on the table
and the resulting access path is index access with list prefetch. With the addition of
histogram statistics on the DEPTNO column, the optimizer knows that the data is skewed; in
this case, most employees work in a department that begins with “P” (see previous page for
actual statistics). The estimate of rows is reduced to 51,802 which is much closer to reality.
The access path that is chosen when this information is known is a tablespace scan.

31

Db2 Runstats Utility – Histogram Stats

SELECT LASTNAME, FIRSTNME

WHERE DEPTNO BETWEEN ? AND ?

What if?

- Sometimes the range is narrow

- Sometimes the range is wide

- The variables are different on each

execution

Actual count = 51,802 rows. The optimizer does not have specific information on
ranges of values. Need to write the code as
dynamic SQL or use a REOPT option.

JAVA Dynamic example:

// Variables to hold the deptno values
String v1 = null;
String v2 = null;

// calls to methods (not shown) that deliver input values
v1 = getInput1(); // e.g. receives D01
v2 = getInput2(); // e.g. receives D11

// NOTE: single quotes embedded around each of the two deptno values
String sql = "SELECT LASTNAME, FIRSTNME, HIREDATE FROM EMP "

+ "WHERE DEPTNO BETWEEN '" + v1 + "' AND '" + v2 + "'";

// conn is the Connection to Db2 assumed to have been made already
// Statement is the vehicle for passing SQL to Db2 and getting back results
Statement stmt = conn.createStatement();

// The sql statement is passed to Db2 in this Java statement
// Since a SELECT statement is passed, a ResultSet is returned
ResultSet rs = stmt.executeQuery(sql);

// This method would process row by row and field by field (not shown)

processResults(rs);

31

32

Clustering Order of Data

Make sure of the clustering order of data in your tablespaces.

Tables should be physically clustered in the order that they are typically
processed by queries processing the most data. This ensures the least
amount of ‘Getpages’ when processing.

1) Indexes specify the physical order.

2) Cluster = ‘YES’ or first index created

Long running queries with ‘List Prefetch’ and ‘Sorts’ in many join processes are
good indicators that maybe a table is not in the correct physical order.

How is the data accessed? How is the table joined to most often? What
queries bring back the most data, most often?

Getting the correct physical clustering can save sorts, and I/Os.

Indexes for Clustering

A ‘Clustering Index’ specifies how data is physically ordered in the
table space file. Operations that benefit from a good clustering
design are:

▪ Queries that return a high number of rows

▪ Grouping operations

▪ Ordering operations

▪ Join operations (especially on Foreign Keys)

▪ Range type predicates

The way the data is clustered in a table space should be specific to the queries that
process through and/or return many rows of data. ra I/O to the index files. The more
indexes, the longer REORG utility processes takes.

Know you data, and know your processing.

33

EMP Table Clustered by EMPNO

000010 HAAS …………..… A00
000020 THOMPSON …..… B01
000030 KWAN ……….…... C01
000050 GEYER …….……… E01
000060 STERN ……….…… D11
000070 PULASKI ……..…… D21
000090 HENDERSON ……. E11

000100 SPENSER ……… E21
000110 LUCHESI …..… A00
000120 O’CONNELL ..…. A00
000130 QUINTANA ….… C01
000140 NICHOLLS ….… C01
000150 ADAMSON.. ….… D11
000160 PIANKA ……….. D11

Should this table be in EMPNO Primary Key order?

It Depends…..

This is an example of the EMP table being in EMPNO primary key order.

34

EMP Table Clustered by EMPNO

What happens here?

SELECT *

FROM EMP

WHERE DEPTNO = ‘A00’

Where are all the rows that

have ‘A00’ as a DEPTNO value?

IF there were 100 rows that contain

this value, they could be on 100

pages of data. Yes?

000010 HAAS …………..… A00
000020 THOMPSON …..… B01
000030 KWAN ……….…... C01
000050 GEYER …….……… E01
000060 STERN ……….…… D11
000070 PULASKI ……..…… D21
000090 HENDERSON ……. E11

000100 SPENSER ……… E21
000110 LUCHESI …..… A00
000120 O’CONNELL ..…. A00
000130 QUINTANA ….… C01
000140 NICHOLLS ….… C01
000150 ADAMSON.. ….… D11
000160 PIANKA ……….. D11

With the table being in EMPNO order, any queries on DEPTNO, or any joins by
DEPTNO will cause many getpages due to the DEPTNOs being scattered across the
file.

35

36

Indexing

Make sure indexes are being chosen by optimizer for queries.

At times (rare), it can be better to have the optimizer execute a query with
a full table space scan versus an index. But I would say in my
experience that 99% of the time developer SQL code should be using
indexes for the retrieval of data.

Why are table spaces scans problematic?

Why would the optimizer not choose an index, instead choosing a

table space scan?

Getting the correct physical clustering can save sorts, and I/Os. A very small
percentage of queries should be doing table scans, so it is important for
developers to make sure their queries are using indexes, or understand why the
optimizer chose a table scan.

37

Why Too Many Indexes Cause Problems

Indexes contain some of the same data as what is in each row of data. For example:

If there exists an index of 3 columns (LASTNAME, FIRSTNME, MIDINIT), then these
columns also exists in data rows.

For every Insert and Delete SQL statement executed, this ondex needs to be inserted
into or deleted from also.

important for developers to make sure their queries are using indexes, or understand
why the optimizer chose a table scan.

EMP Table with Indexes

000010 HAAS …………..… A00
000020 THOMPSON …..… B01
000030 KWAN ……….…... C01
000050 GEYER …….……… E01
000060 STERN ……….…… D11
000070 PULASKI ……..…… D21
000090 HENDERSON ……. E11

000100 SPENSER ……… E21
000110 LUCHESI …..… A00
000120 O’CONNELL ..…. A00
000130 QUINTANA ….… C01
000140 NICHOLLS ….… C01
000150 ADAMSON.. ….… D11
000160 PIANKA ……….. D11

XEMP1 index

on EMPNO
XEMP2 index

on DEPTNO

XEMP3 index on

LASTNAME,

FIRSTNME,

MIDINIT

The more indexes the more physical I/O occurs for every insert and delete statement.
In this example with the EMP table having 3 indexes, if a row is deleted its
information must be deleted from each index also. Reverse happens on an insert.
When an insert occurs, the new EMPNO needs added to the XEMP1 index file, the
DEPTNO needs added to the XEMP2 index file, and same for the new employee’s
name to the XEMP3 index file. So that makes for 4 physical files affected for every
insert and delete statement.

If an SQL update occurs for a column and that column is part of an index, then that
index needs modified also. For indexes that is a delete followed by an insert to the
index file.

38

39

Why are Table Space Scans Problematic
at Times?

• Increase of CPU time when it comes to checking every row in a table against the
query logic.

• Disk I/O: All data in a table may not be in a buffer pool, so physical I/O is
needed. There is something called Sequential Prefetch that will help minimize
the I/O needed when table scans are occurring, but for some tables there can
still be a lot of I/O.

• Filling up its assigned buffer pool. Data is always brought from the physical disk
to an area in memory called a buffer pool. Sometimes a buffer pool is shared by
a number of tables. Once data is brought into a buffer pool, it will stay until the
buffer pool area gets filled up, and then some pages begin dropping out. Db2
knows what data pages for a table are in the buffer pool, and ones that are not.
Obviously the more data pages for a table in buffer pool memory, the better.
Having one table take up most of a buffer pool can then hurt any other table’s
response times.

40

Why Would the Optimizer Choose a Table
Space Scan?

1. Are any predicate(s) poorly coded in a non-indexable way that takes away any
possible index choices from the optimizer?

2. Do the predicates in the query not match any available indexes on the table?
Know your indexes on a table!

3. The table could be small and Db2 decides a table scan may be faster than
index processing.

4. The catalog statistics could say the table is small. This is more common in test
environments where the Runstats utility is not executed very often.

5. Are the predicates such that Db2 thinks the query is going to retrieve a large
enough amount of data that would require a table scan? Some explain tools
will show the number of rows Db2 thinks will be returned in the execution of
a query (the IBM Data Studio tool is very good at this).

Developers should:
- Know their data (cardinalities, columns with uneven distributions of data, etc.)
- Know the indexes on tables involved in their queries
- Know the clustering order of data in their tables
- Know the partitioning of data in their tables

41

Why Would the Optimizer Choose a Table
Space Scan?

6. Are the predicates such that Db2 picks a non-clustered index, and
the rows needed are scattered throughout the table file such that the
number of data pages to retrieve is high enough based on total
number of pages in the table to require a table scan? Know how
the data is physically clustered in the tablespace!

7. Are the tablespace files or index files physically out of shape and
need a REORG?

8, Are there no predicates? So the query wants all the rows.
9. Sometimes there are just too many conditions in the logic to return the

results needed any other way. This is quite typical with many predicates
that are OR’d together.

42

Index Only Access V4
SELECT LASTNAME, FIRSTNME, MIDINIT

FROM EMP

WHERE LASTNAME LIKE 'Jo%'

V4: Provides same information. Click on the IXSCAN node. Then open up the
information of the left.

Include Columns

• CREATE UNIQUE INDEX XEMP1
ON EMP (EMPNO)
INCLUDE(LASTNAME,FIRSTNME,MIDINIT)

• ALTER INDEX XEMP1
ADD INCLUDE COLUMN (LASTNAME,FIRSTNME,MIDINIT)

• SYSINDEXES.UNIQUE_COUNT = 1

EMPNO LASTNAME FIRSTNME MIDINIT

Unique constraint

Index key

Julie, New Slide

H4 Include Columns

The SYSINDEXES catalog table column UNIQUE_COUNT keeps track of the

number of columns that make up the unique constraint.

Including additional columns can promote index only access path, however be aware

of the additional overhead of maintaining the index.

43

Have SQL Optimization Coding Standards and Guidelines:

1. Do not code functions on columns in predicates.
2. Do not code mathematics on columns in predicates.
3. Code Stage 1 predicates only. Rewrite any Stage 2 predicates.
4. Only code the columns needed.
5. Only sort on the columns needed to sort on.
6. Watch out for sorts. Are they needed.
7. Watch out for Union versus Union all. Union causes a sort for

uniqueness.
8. Watch out for Distinct. Is it needed? Same for Group By. Can it

be rewritten using subqueries?
9. On-Clause extensions filter during the join. It’s best to filter

before joining if possible.
10. Stay away from ‘OR’ logic if possible in connecting predicates.

Boolean term predicates are best

44

Have SQL Optimization Coding Standards and Guidelines:

11. Watch out for the ‘LIKE’ predicate. ‘Begins With’ logic is indexable.
‘Contains’ and ‘Ends With’ is not indexable.

12. Do not code ‘Not Between. Rewrite it.
13. Use ‘Fetch First XX Rows’ whenever possible.
14. All Case logic should have an ‘else’ coded. This eliminates returning nulls by

default if all the Case conditions are not met.
15. Hard code values in predicates whenever possible.
16. Make sure cardinality statistics exist for all columns in all tables.

Make sure special frequency values exist for columns often used
in ‘Where’ logic having uneven distribution of values.

11. Minimize the number of times Db2 SQL statements are sent from a program
or unit of work. Code RELATIONALLY not PROCEDURALLY!.

12. Stay away from ‘Not’ logic if possible.
13. Compare columns to a value that matches its data type. DO NOT compare a

character column to a numeric value (Db2 implicit casting takes place)
14. More…….

45

Have Steps to Tuning a Query
1. Check every predicate. Are they indexable and Stage 1?
2. Is there a ‘Distinct’? Is it needed? Can it be rewritten with EXISTS/IN subquery.
3. Are there subqueries? Rewrite ‘In’ as ‘Exists’ and vice versa.
4. Check Db2 statistics on every table and every column involved. Cardinality on all

columns?
5. Check the number of times every SQL statement is getting executed. Can the logic be

changed to cut down the number of times requests are sent?
6. Check the Db2 Explain.

➢ Are there any table scans? Any sorts?
➢ Are there any Stage 2 predicates? Can they be rewritten a different way?
➢ Are there any index scans? Index with matching columns = 0
➢ If there is a join, what is the order of tables chosen?
➢ Is there any materialization from a view, nested or common table expression? If

so, how many rows are there? How is it used? Sparse index added to it?
➢ Are there any correlated subqueries? How many times is it typically executed in

the query? Can they be Index-Only?
7. Are there any columns in predicates with uneven distribution statistics? Should the

value be hard coded? IS REOPT an option? Dynamic query?
8. Are there any range predicates. Could histogram statistics help? Dynamic rewrite?
9. Can you rewrite any predicate differently? In vs Between vs Like, etc…
10. Can we rewrite the query a different way?

46

47

Developers: Make sure you

1. KNOW your table. Number of rows? How its partitioned?
Clustering?

2. Know your indexes on each table?

3. Get stronger in SQL to figure out different ways to rewrite
queries

4 Know every query and expected number of rows being returned.
Does it match up to what the optimizer thinks will be returned

5. Tablespace scan occurring. KNOW why.

6. Have program and/or query walkthroughs.

7. Know how to execute Db2 Explains

48

Thank you for allowing me and Themis to
share some of our experience and
knowledge today!

Tony Andrews
tandrews@themisinc.com

I hope that you learned something new today !!!!

Speaker: Tony Andrews
Company: Themis, Inc.
Email Address: tandrews@themisinc.com

Please fill out your session evaluation!

49

