
Advanced SQL and the Power of
Rewriting Queries

Tony Andrews

Themis Inc.

tandrews@themisinc.com

Often times there can 4,5,6 different ways to write an SQL query and get the same results back.

What makes one better than any of the others, and is there any ones that are always better, or

always worse? Sometimes rewriting 1 predicate in an SQL statement can cause optimization to

change. This presentation breaks down many examples of query rewrites and how they can

affect performance and optimization. Being strong in SQL is a great skill when it comes to

performance and tuning of queries.".

1

Objectives

Presentation Objectives:

• Objective 1: To help the audience become stronger in SQL and

understand the power of SQL rewrites.

• Objective 2: To help the audience become more educated in the

area of performance and tuning from the application side.

• Objective 3: To help the audience understand how certain SQL

statements operate within DB2.

• Objective 4: To help the audience understand the different areas of

performance tuning when it comes to a program or query,

Objective 5: To break down the many different predicate types and

how they affect a query's optimization

• Get empowered!

This presentation is to show in detail one of the many ways to help get a query to run faster. As

will be shown there are many factors that can have a impact on query performance, but the one

that is very powerful and totally in the hands of the developers is the query rewrite.

2

Tuning Approaches

• Change the SQL. Rewrite the query or predicates

a different way

• Redesign the program flow

• Gather / Alter Statistics

• Change Physical Design

• System Tuning

Improving SQL performance can be done in one of at least 5 ways. The first 2 ways are totally

controlled by the developer. Changing the way a query is written to and keeping the same logic

can often times send the optimizer down a different physical path in gathering the rows for the

final result set. At times there may be 3, 4, 5, or 6 different ways to write a query and return the

same result sets. The SQL must be written in a way that may be processed efficiently by the

database. Redesigning program flow, and minimizing the number of time a program sends SQL

statements to DB2 can have an impact.

An appropriate level of statistics about the data must be gathered to tell the optimizer about the

nature of the data being accessed.

The way the physical objects are defined must be aligned with the types of queries that are to be

performed. The 2 major areas here are indexing and the clustering order of data in a table .

Lastly, system tuning may be done to adjust the parameters under which the DB2 subsystem

operates to effectively match the workload. Altering system parameters, tuning temporary

space, and adjusting buffer pool sizes and thresholds are all examples of this type of tuning. An

appropriately tuned system can affect an improvement in performance.

This presentation focuses on the first bullet, changing the SQL.

3

Review - DEPT Table

DEPTNO DEPTNAME MGRNO

A00 SPIFFY COMPUTER SERVICE DIV. 000010

B01 PLANNING 000020

C01 INFORMATION CENTER 000030

D01 DEVELOPMENT CENTER <null>

D11 MANUFACTURING SYSTEMS 000060

D21 ADMINISTRATION SYSTEMS 000070

E01 SUPPORT SERVICES 000050

E11 OPERATIONS 000090

E21 SOFTWARE SUPPORT 000100

F22 BRANCH OFFICE F2 <null>

G22 BRANCH OFFICE G2 <null>

H22 BRANCH OFFICE H2 <null>

I22 BRANCH OFFICE I2 <null>

J22 BRANCH OFFICE J2 <null>

Partial data

A review of some of the data in the DB2 sample table DEPT.

4

Review - EMP Table
EMPNO DEPTNO LASTNAME

000010 A00 HAAS

000020 B01 THOMPSON

000030 C01 KWAN

000050 E01 GEYER

000060 D11 STERN

000070 D21 PULASKI

000090 E11 HENDERSON

000100 E21 SPENSER

000110 A00 LUCCHESI

000120 A00 O’CONNELL

000130 C01 QUINTANA

000140 C01 NICHOLLS

000150 D11 ADAMSON

000160 D11 PIANKA

000170 D11 YOSHIMURA

…..

Partial data

A review of some of the data in the DB2 sample table EMP.

5

Review – EMPPROJACT Data

EMPNO PROJNO ACTNO

000130 IF1000 90

000130 IF1000 100

000140 IF1000 90

000140 IF2000 100

000140 IF2000 100

000140 IF2000 110

000140 IF2000 110

000150 MA2112 60

000150 MA2112 180

Partial data

A review of some of the data in the DB2 sample table EMPPROJACT. An employee will have

a rows or rows in this table if they are currently working on a project (or projects). They could

also have multiple rows if they are working multiple activities within a specific project. There is

a 0-many relationship between the EMP table and this EMPPROJACT table.

6

Example 1

Note: Some employees may not be working on projects

Some employees may be working on 1 project

Some employee may be working on multiple projects

Some employees may be working on multiple activities

within same project

Tables Needed:

• EMP Employee table

• EMPPROJACT Employee/Project/Activity

Provide a report of employees who work on Project ‘IF2000’.

Show Employee Number, Last Name, and Salary.

This request for a report requires 2 tables. There is a 0-many relationship between the tables.

7

Example 1 – Solution 1
If we try a join, we get the following duplicate results:

Join Logic

SELECT E.EMPNO, E.LASTNAME, E.SALARY

FROM EMP E,

EMPPROJACT EP

WHERE E.EMPNO = EP.EMPNO

AND EP.PROJNO = 'IF2000'

EMPNO LASTNAME SALARY

000030 KWAN 38250.00

000140 NICHOLS 28420.00

000140 NICHOLS 28420.00

000140 NICHOLS 28420.00

000140 NICHOLS 28420.00

Duplicates because this employee

works on multiple activities

associated with project ‘IF2000’

The first thought to fulfill this request would be to code and execute an SQL Join between the 2

tables, zeroing in on the employees that are a part of Project = ‘IF2000’.

As can be seen, when a join is coded (and knowing the relationship between the tables) there is a

potential for duplicates that show up due to the multiple activities some employees can be

assigned for that project. This is where developers need to be aware and know the relationship

between tables. I have seen many incident reports come about in production where a query was

running for awhile and working only because it was lucky that there existed no duplicate in the

data. But when more data was added, duplicates came about and the program/query then issued

duplicate rows.

KNOW YOUR DATA and RELATIONSHIPS.

What can be done to eliminate the duplicates?

8

Example 1 – Solution 1

Join Logic

SELECT DISTINCT E.EMPNO, E.LASTNAME, E.SALARY

FROM EMP E,

EMPPROJACT EP

WHERE E.EMPNO = EP.EMPNO

AND EP.PROJNO = 'IF2000'

Add a DISTINCT?

EMPNO LASTNAME SALARY

000030 KWAN 38250.00

000140 NICHOLS 28420.00

Need a Distinct or Group By to handle duplicates:

The easiest and first thought most developers think of is to add the Distinct word as part of the

select, which will eliminate the duplicates.

In order for the RDBMS to eliminate duplicates via the Distinct, it may load the data into a Sort

Workfile and execute a sort in order to get the data ordered. It then pulls out the unique values.

Distinct does not always cause a sort to take place as DB2 often does sort avoidance. The only

way to know for sure would be executing a DB2 Explain.

If there is a sort specific to the distinct, there is some overhead involved in this sort. A workfile

must be allocated, then loaded, then sorted, and from there unique values are pulled for the final

result set. Sorts are pretty fast in DB2, and my first questions when I see a sort occurring are:

Can it be eliminated? How big is the sort? Sorts are expensive as their size.

Group By will also eliminate duplicates and works the same as a distinct.

9

Non Correlated Subquery Logic

SELECT E.EMPNO, E.LASTNAME, E.SALARY

FROM EMP E

WHERE E.EMPNO IN

(SELECT EP.EMPNO

FROM EMPPROJACT EP

WHERE EP.PROJNO = 'IF2000')

Example 1 – Solution 2
Non Correlated Subquery

OR: Code a Non

Correlated Subquery to

eliminate duplicates

EMPNO LASTNAME SALARY

000030 KWAN 38250.00

000140 NICHOLS 28420.00

There are other ways to eliminate the duplicates needed for this example, both ways requiring a

Subquery. These options are available because the there is no data needed to be retrieved from

the EMPPROJACT table. This give us the option to take it out of the join, and move it into a

subquery.

The first way is to code a Non Correlated Subquery, as shown on this page.

This query is checking to see if each EMPNO value is in the list of EMPNOs generated by the

subquery. An EMPNO could be in the list multiple times, but the results will not show the

EMPNO multiple times. Remember that the list of values coming out of a non-correlated

subquery will have its results sorted in order to eliminate duplicates in the list, and to get the list

in ascending order.

Db2 will sometimes take the values from the non correlated subquery, and instead of keeping the

list in a an In-List, will put the values into a temporary table and then use it in a join to the outer

table.

10

Exists Correlated Subquery Logic

SELECT E.EMPNO, E.LASTNAME, E.SALARY

FROM EMP E

WHERE EXISTS

(SELECT 1

FROM EMPPROJACT EP

WHERE E.EMPNO = EP.EMPNO

AND EP.PROJNO = 'IF2000')

Example 1 – Solution 3
Correlated Subquery

OR: Code a Correlated

Subquery to eliminate

duplicates

EMPNO LASTNAME SALARY

000030 KWAN 38250.00

000140 NICHOLS 28420.00

The other way to eliminate duplicates is by coding the SQL using a Correlated Subquery with

the Exists clause.

The logic here is as each EMPNO value is passed to the subquery for execution, the question

“Does that join condition exist for the particular EMPNO value?” is processed. Even if it exists

multiple times in the subquery, the value will still only get written out once.

Writing it this way eliminates any sorts that could be taking place in a jpin, but the subquery will

get executed multiple times.

Which way is best ?

1). Using the Distinct

2). Writing a subquery using the ‘In’

3). Writing a subquery using the ‘Exists’

Of course the answer is ‘It depends’.

11

Example 1 – Solution 4
Intersect Logic

Intersect Logic
WITH X AS

(SELECT E.EMPNO

FROM EMP E

INTERSECT ALL

SELECT EPA.EMPNO

FROM EMPPROJACT EPA

WHERE EPA.PROJNO = 'IF2000'

)

SELECT E.EMPNO, E.LASTNAME, E.SALARY

FROM EMP E, X

WHERE E.EMPNO = X.EMPNO

ORDER BY 1

;

Intersect to get

EMPNOs, then

join to get

LASTNAME and

SALARY.

EMPNO LASTNAME SALARY

000030 KWAN 38250.00

000140 NICHOLS 28420.00

The SQL NTERSECT can also be used to find the EMPNOs that are in the EMP table and also

in the EMPPROJACT table under project ‘IF2000’ . A join is then need back to the EMP table

in order to get the LASTNAME and SALARY.

12

Example 1 – Solution 4 Count(*) logic

Count(*) Logic

SELECT E.EMPNO, E.LASTNAME, E.SALARY

FROM EMP E

WHERE 0 <

(SELECT COUNT(*)

FROM EMPPROJACT EPA

WHERE EPA.EMPNO = E.EMPNO

AND EPA.PROJNO = 'IF2000')

;

Count Logic

Typically not

good.

EMPNO LASTNAME SALARY

000030 KWAN 38250.00

000140 NICHOLS 28420.00

This is pretty common logic for developers and analyst because it makes a little more

straightforward sense. But this query is the most expensive in execution time and CPU and

would not be a recommendation.

This is due to the fact that it must first count up all the rows that meet the criteria for each

specific employee number, instead of stopping at the first occurrence (in the case of EXIST

logic) or the one time building of an IN list. There is no need to always count the number of

rows for each employee number working on ‘IF20000’ and comparing to 0. The counting of

rows at times can have considerable overhead involved.

This logic seems to be found in much older code at companies and should be rewritten whenever

found.

13

Example Differences

- Distinct. By coding the distinct, DB2 may sort the final result set to

eliminate duplicates.

- Non Correlated Subquery. Subquery executes once and puts results

either into a list or table to feed the outer query.

- Correlated Subquery. Subquery gets executed multiple times, executing

for each unique EMPNO from the outer query.

- Count(*). Counts every row where each EMPNO value exists in the

EMPPROJACT table and compares the count to 0. Very inefficient!

- INTERSECT ALL. First gets each EMPNO from top query that

intersects (exists) in the EMPPROJACT table, Then join to EMP table

for LASTNAME and SALARY.

Which one is best? It depends:

How big is the Distinct sort? The larger the size of sorts the more expensive the query and

runtime. This is typically the worst. What does the join process look like? Are there indexes

involved in the join? Which join method? Any join sorts?

Non Correlated Subquery. This is typically better because the sort is smaller than the Distinct

sort. The sort is done on only one column for however many values come out of the subquery.

Correlated Subquery. This subquery will execute multiple times so it is imperative that the

subquery uses a index when it gets processed for each value sent to it via the join. If the

subquery can execute as ‘Index Only’ and there is matching index occurring, executing many

times can be very fast and efficient.

So the answer is ‘It Depends’. The nice thing about these is that we have options for duplicate

data at times and they all execute very different within DB2. Depending on the data and

physical design, one will usually run better than the others.

14

Example 2

Note: Each employee will have a row in the table for

each major
EMPNO MAJOR

E1 MAT

E1 CSI

E2 MAT

E3 CSI

E4 ENG

EMPMAJOR

Provide a list of employees that major

in both ‘MAT’ and ‘CSI’

This screen starts the second example. This is a typical table design where an ID / ACCT_NUM

may have multiple rows each unique based on an ACCT type, status, code, ….

This table is not one of the DB2 sample tables but a good example of a common design. In this

example, how do we find the employee numbers that have both a row with value of ‘MAT’ in the

MAJOR column, and also a row with a value of ‘CSI’ in the MAJOR column?

15

Example 2 – Solution 1

EMPNO MAJOR

E1 MAT

E1 CSI

E2 MAT

E3 CSI

E4 ENG

EMPMAJOR

Group By / Having Logic:

SELECT EMPNO

FROM EMPMAJOR

WHERE MAJOR IN ('MAT', 'CSI')

GROUP BY EMPNO

HAVING COUNT(*) = 2;

PROBLEM: Find all employees who major in math (MAT)

and computer science (CSI).

The first solution would be to code a query with a Group BY and Having clause to see which

EMPNO(s) have both (a count of 2) rows that have a ‘MAT’ and ‘CSI’.

16

Example 2 – Solution 2

Quota Query Logic

SELECT DISTINCT EM1.EMPNO

FROM EMPMAJOR AS EM1

WHERE 2 =

(SELECT COUNT(*)

FROM EMPMAJOR EM2

WHERE EM2.EMPNO = EM1.EMPNO
AND EM2.MAJOR IN ('MAT', 'CSI');

EMPNO MAJOR

E1 MAT

E1 CSI

E2 MAT

E3 CSI

E4 ENG

EMPMAJOR

PROBLEM: Find all employees who major in math (MAT) and

computer science (CSI).

The next solution would be to code what’s called a ‘Quota Query’ where the number 2 is used in

a correlated subquery.

17

Example 2 – Solution 3

EMPNO MAJOR

E1 MAT

E1 CSI

E2 MAT

E3 CSI

E4 ENG

EMPMAJOR

PROBLEM: Find all employees who major in math (MAT) and

computer science (CSI).

Self Join Logic:

SELECT EMPNO

FROM EMPMAJOR AS EMP1 JOIN

EMPMAJOR AS EMP 2

ON EMP1.EMPNO = EMP2.EMPNO

WHERE EMP1.MAJOR = 'MAT'

AND EMP2.MAJOR = 'CSI';

And the last way to code logic for this would be using an SQL ‘Self Join’ where you join the

EMP table to itself by EMPNO. And by joining this way we code where in one table there is a

row with ‘MAT’ and self joining back but looking for a ‘CSI’ row.

18

Example 3 – Solution 1

PROBLEM: Find the youngest employee in each department.

HINT: Youngest employee would be the one with highest birthdate

SELECT E1.EMPNO, E1.LASTNAME

FROM EMP AS E1

WHERE E1.BIRTHDATE = (SELECT MAX(E2.BIRTHDATE)

FROM EMP E2

WHERE E2.DEPTNO = E1.DEPTNO)

Correlate Subquery by

Deptno

This screen starts the third example. Each employee row in the EMP table contains the

department that the employee works in and their birth date. This query is to find the youngest

employee in each department.

Solution 1 would be coding a query with a correlated subquery.

19

Example 3 – Solution 2

SELECT E1.EMPNO, E1.LASTNAME

FROM EMP E1

WHERE (E1.DEPTNO,E1.BIRTHDATE)IN(SELECT E2.DEPTNO,

MAX(E2.BIRTHDATE)

FROM EMP E2

GROUP BY E2.DEPTNO)

PROBLEM: Find the youngest employee in each department.

FULL SELECT

ROW-VALUE-EXPRESSION

This solution is using what is called a Row-Value expression in SQL where the ‘IN’ predicate

contains 2 values for each entry in the in list.

The in-list would look like (deptno1 and max birthdate, deptno2 and max birthdate, …)

20

Example 4 – Solution 1

SELECT D.DEPTNAME

,D.LOCATION

FROM DEPT D

WHERE (SELECT AVG(BONUS) FROM EMP E1

WHERE D.DEPTNO = E1.DEPTNO)

>

(SELECT AVG(SALARY) FROM EMP E2

WHERE D.DEPTNO = E2.DEPTNO)

List all departments where a department average bonus is greater

that its department average salary.

Example 4 needs some aggregation (average bonus and average salary) calculations for its logic.

This first solution is by coding correlated subqueries that are scalar fullselects to compare.

21

Example 4 – Solution 2

SELECT D.DEPTNO, D.LOCATION, AVG(BONUS), AVG(SALARY)

FROM THEMIS81.DEPT AS D INNER JOIN

THEMIS81.EMP AS E1 ON D.DEPTNO = E1.DEPTNO

GROUP BY D.DEPTNO, D.LOCATION

HAVING AVG(E1.BONUS) >

(SELECT AVG(SALARY)

FROM THEMIS81.EMP E2

WHERE E2.DEPTNO = D.DEPTNO)

List all departments where a department average bonus is greater

that its department average salary.

This solution uses the Group By and Having SQL logic to obtain the results. Notice that the

Having clause can also be correlated. This solution allows to also have the aggregated amounts

as part of the output.

22

Example 4 – Solution 3

WITH X AS

(SELECT DEPTNO, AVG(BONUS) AS AVG_BONUS,

AVG(SALARY) AS AVG_SALARY

FROM EMP

GROUP BY DEPTNO)

SELECT D.DEPTNO, D.DEPTNAME, X.AVG_BONUS, X.AVG_SALARY

FROM DEPT D, X

WHERE X.AVG_BONUS > X.AVG_SALARY

AND X.DEPTNO = D.DEPTNO

List all departments where a department average bonus is greater

that its department average salary.

Solution 3 uses a Common Table Expression (CTE) where the averages are calculated ahead of

time and materialized into a temp table that can the be used in a direct join to the DEPT table.

This solution allows to also have the aggregated amounts as part of the output.

These are great example of result sets that need both detail data from a table along with

aggregated data in each line.

23

DB2 Explain

Notice the different access paths

This is an example of the DB2 Explain output for the access paths chosen for each of the

previous 3 queries. Notice each one is very different than the others.

Notice the ‘X’ table. This is the CTE name given in solution 3. By seeing this table name in the

DB2 Explain output tells us that the table will be materialized.

24

Optimizer Costing

This is the guesstimated runtime costs for the previous 3 queries. Notice big differences in

costing numbers.

25

Example 5 – Solution 1

SELECT E.EMPNO, E.LASTNAME

FROM EMP E

WHERE E.EMPNO NOT IN

(SELECT EPA.EMPNO

FROM EMPPROJACT EPA)

List employees that are not working on projects. This would be those

EMP rows that do not have EMPNO values in the EMPPROJACT table.

This is very typical programming logic for any relational database where you need to know the

rows in 1 table where the primary key id not in another table: 3 ways to do this (NOT IN, NOT

EXISTS, ANTI JOIN) .

This is an example of the ‘NOT IN’ logic.

26

Example 5 – Solution 2

SELECT E.EMPNO, E.LASTNAME

FROM EMP E

WHERE NOT EXISTS

(SELECT 1

FROM EMPPROJACT EPA

WHERE EPA.EMPNO = E.EMPNO)

List employees that are not working on projects. This would be those

EMP rows that do not have EMPNO values in the EMPPROJACT table.

Solution 2 shows the ‘NOT EXISTS’ correlated subquery way to code for the results.

27

Example 5 – Solution 3

SELECT E.EMPNO, E.LASTNAME

FROM EMP E LEFT JOIN

EMPPROJACT EPA ON EPA.EMPNO = E.EMPNO

WHERE EPA.EMPNO IS NULL

List employees that are not working on projects. This would be those

EMP rows that do not have EMPNO values in the EMPPROJACT table.

Solution 3 is called the ‘ANTI JOIN’ where you code up an outer join, and then ask for the rows

from the null supplying table where the joined column in null. This specifies that a particular

join key was not found on the other table.

28

Example 5 – Solution 4

SELECT E.EMPNO, E.LASTNAME

FROM EMP E

EXCEPT ALL

SELECT E.EMPNO, E.LASTNAME INNER JOIN

EMPPROJACT EPA

ON EPA.EMPNO = E.EMPNO

List employees that are not working on projects. This would be those

EMP rows that do not have EMPNO values in the EMPPROJACT table.

One more solution using one of the newer SQL SET operation EXCEPT/EXCEPT ALL. What

in the first output is an exception to what is in the second output.

29

Optimizer Costing

And with different access paths comes different costing numbers.

30

Example 6: Max Date Row

Find the row with the most current date value when there exists

multiple rows with same key value

SELECT ...

FROM TABLE T1

WHERE T1.PK = ?

AND T1.DATE =

(SELECT MAX(T2.DATE)

FROM TABLE T2

WHERE T2.PK = T1.PK)

Solution 1

Subquery

Another very common programming task with tables that contain multiple rows with the same key value, but are

different based on a timestamp column.

Programming logic typically wants us to get the most current row (Max Timestamp column). This screen 2

different ways to code for this.

Works well with multiple join fields, or max number of other fields, or getting the min instead too… If you have a

possibility of multiple max dates or timestamps containing same values, you can use a second field to narrow it

down in the AND clause.

For example: Table EMP2 contains duplicate rows with an UPD_TSP column.

SELECT EMPNO, UPD_TSP
FROM EMP2 T1
WHERE T1.EMPNO = '000010'

AND T1.UPD_TSP =
(SELECT MAX(T2.UPD_TSP)
FROM EMP2 T2
WHERE T2.EMPNO = T1.EMPNO)

;
SELECT T1.EMPNO, T1.UPD_TSP
FROM EMP2 T1 LEFT JOIN

EMP2 T2 ON T1.UPD_TSP < T2.UPD_TSP
AND T1.EMPNO = T2.EMPNO

WHERE T1.EMPNO = '000010'
AND T2.UPD_TSP IS NULL

31

Example 6: Max Date Row

Find the row with the most current date value when there exists

multiple rows with same key value

SELECT ...

FROM TABLE T1 LEFT JOIN

TABLE T2 ON T1.DATE < T2.DATE

AND T1.PK = T2.PK

WHERE T1.PK = ?

AND T2.DATE IS NULL

Solution 2

Self Join

Another very common programming task with tables that contain multiple rows with the same key value, but are

different based on a timestamp column.

Programming logic typically wants us to get the most current row (Max Timestamp column). This screen 2

different ways to code for this.

Works well with multiple join fields, or max number of other fields, or getting the min instead too… If you have a

possibility of multiple max dates or timestamps containing same values, you can use a second field to narrow it

down in the AND clause.

For example: Table EMP2 contains duplicate rows with an UPD_TSP column.

SELECT EMPNO, UPD_TSP
FROM EMP2 T1
WHERE T1.EMPNO = '000010'

AND T1.UPD_TSP =
(SELECT MAX(T2.UPD_TSP)
FROM EMP2 T2
WHERE T2.EMPNO = T1.EMPNO)

;
SELECT T1.EMPNO, T1.UPD_TSP
FROM EMP2 T1 LEFT JOIN

EMP2 T2 ON T1.UPD_TSP < T2.UPD_TSP
AND T1.EMPNO = T2.EMPNO

WHERE T1.EMPNO = '000010'
AND T2.UPD_TSP IS NULL

;

32

Example 7: Detail with Aggregation

SELECT E1.EMPNO, E1.LASTNAME, E1.DEPTNO, E1.SALARY,

(SELECT DEC(AVG(E2.SALARY),7,2)

FROM EMP E2

WHERE E2.DEPTNO = E1.DEPTNO) AS AVG_SAL

FROM EMP E1

WHERE E1.DEPTNO < 'D01'

Solution 1: Scalar Fullselect in the SELECT

Aggregate Partitioning: Many ways to get detail along with aggregation, even by department.

This first example shows coding the Scalar Fullselect in the ‘SELECT’ portion of the query,

and the second example shows getting the same result coding a nested table expression.

Another way is using the newer PARTITION BY clause:

SELECT DEPTNO, EMPNO, SALARY,

AVG (SALARY)

OVER (PARTITION BY DEPTNO) AS SUM_SAL

FROM EMP

33

Example 7: Detail with Aggregation

SELECT E.EMPNO, E.LASTNAME, E.DEPTNO, E.SALARY,

X.AVG_SAL

FROM EMP E,

(SELECT DEPTNO, DEC(AVG(SALARY),7,2) AS AVG_SAL

FROM EMP

WHERE DEPTNO < 'D01'

GROUP BY DEPTNO) AS X

WHERE E.DEPTNO < 'D01'

AND E.DEPTNO = X.DEPTNO

Solution 2: Table Expression

Aggregate Partitioning: Many ways to get detail along with aggregation, even by department.

This first example shows coding the Scalar Fullselect in the ‘SELECT’ portion of the query,

and the second example shows getting the same result coding a nested table expression.

Another way is using the newer PARTITION BY clause:

SELECT DEPTNO, EMPNO, SALARY,

AVG (SALARY)

OVER (PARTITION BY DEPTNO) AS SUM_SAL

FROM EMP

34

Example 7: Detail with Aggregation

SELECT LASTNAME, DEPTNO, SALARY,

DEC(AVG(SALARY) OVER (PARTITION BY DEPTNO), 7, 2)

AS AVGSAL

FROM EMP

WHERE DEPTNO < ‘D01’

Solution 3: Partition By

Aggregate Partitioning: Many ways to get detail along with aggregation, even by department.

This first example shows coding the Scalar Fullselect in the ‘SELECT’ portion of the query,

and the second example shows getting the same result coding a nested table expression.

Another way is using the newer PARTITION BY clause:

SELECT DEPTNO, EMPNO, SALARY,

AVG (SALARY)

OVER (PARTITION BY DEPTNO) AS SUM_SAL

FROM EMP

35

Example 7: Detail with Aggregation

SELECT D.DEPTNO, D.DEPTNAME, AVG(SALARY) AS AVG_SAL

FROM DEPT D LEFT OUTER JOIN

EMP E ON D.DEPTNO = E.DEPTNO

GROUP BY D.DEPTNO, D.DEPTNAME

Sometimes can be done with a join.

Different query than previous ones.

Aggregate Partitioning: Many ways to get detail along with aggregation, even by department.

This first example shows coding the Scalar Fullselect in the ‘SELECT’ portion of the query,

and the second example shows getting the same result coding a nested table expression.

Another way is using the newer PARTITION BY clause:

SELECT DEPTNO, EMPNO, SALARY,

AVG (SALARY)

OVER (PARTITION BY DEPTNO) AS SUM_SAL

FROM EMP

36

37

Ex 8: Left Join – ON Clause Extensions
SELECT D.DEPTNO, D.DEPTNAME,

D.MGRNO, E.LASTNAME

FROM DEPT D LEFT OUTER JOIN EMP E

ON D.MGRNO = E.EMPNO

AND D.DEPTNO LIKE 'D%'

DEPTNO DEPTNAME MGRNO LASTNAME

A00 SPIFFY COMPUTER SERVICE DIV. 000010 <null>

B01 PLANNING 000020 <null>

C01 INFORMATION CENTER 000030 <null>

E01 SUPPORT SERVICES 000050 <null>

D01 DEVELOPMENT CENTER <null> <null>

D11 MANUFACTURING SYSTEMS 000060 STERN

D21 ADMINISTRATION SYSTEMS 000070 PULASKI

E11 OPERATIONS 000090 <null>

E21 SOFTWARE SUPPORT 000100 <null>

F22 BRANCH OFFICE F2 <null> <null>

G22 BRANCH OFFICE G2 <null> <null>

H22 BRANCH OFFICE H2 <null> <null>

I22 BRANCH OFFICE I2 <null> <null>

J22 BRANCH OFFICE J2 <null> <null>

By adding the predicate D.DEPTNO LIKE ‘D%’ to the ON clause only filters what is to be

joined. It does not filter data from the final result set.

Note: Only predicates in a WHERE clause will filter rows from a result set. Predicates in an ON

clause determines which rows should return data from the other table to be joined (non driver

table

Sometimes in logic we want to ONLY go to another table to retrieve joined values based on

certain condition(s). This is a good way to go about it.

38

Ex 8: Left Join – ON Clause Extensions

SELECT D.DEPTNO, D.DEPTNAME, D.MGRNO,

CASE

WHEN D.DEPTNO LIKE ‘D%’ THEN E.LASTNAME

ELSE NULL

END AS LASTNAME

FROM DEPT D LEFT OUTER JOIN EMP E

ON D.MGRNO = E.EMPNO

Many will use the CASE logic to decide whether to show some columns from the other table or

not. In this example a join will take place for every department over to the employee table, and

at the last minute decide whether to show the lastname or not.

V11 Sparse Indexing

WITH X AS

(SELECT DEPTNO,

AVG(SALARY) AS AVG_SAL

FROM EMP

GROUP BY DEPTNO)

SELECT D.DEPTNO,

D.DEPTNAME,

X.AVG_SALARY

FROM DEPT D, X

WHERE D.DEPTNO = X.DEPTNO

Sparse

Index

Seen more especially with table expressions.

V11 sparse index processing is similar to hash joining on other platforms (Db2 LUW, SQL

Server, Oracle). This is usually a good thing that the optimizer chooses. The index is built

with hashed values in memory (called In-Memory-Data-Cache). Could overflow to a work

file if the entries in the sparse index are too many that overflows the MXDTCACH setting.

The Sparse index gets built at runtime, with the hash matching join being faster than index

lookups on the inner table of the nested loop join. Especially if the join has enough rows

from the outer to inner to "pay back" the build / cost of the sparse index/hash.

This helps especially with table expressions that get ‘materialized’. Always look in the

explain to see if an index was built.

Predicate Rewrites
Predicate Types:

- Equal, Range, IN-List, Subquery, Not

General Predicate Rules:

- Predicates AND’d together are typically more efficient than predicates

with OR logic

- Use constants whenever possible

- Write predicates to be indexable

- No functions/mathematics on columns in predicates

- Avoid NOT logic whenever possible

- Different predicate type generate different filter factors

- z/OS avoid stage 2 predicates

NOTE: Some predicates are automatically rewritten by the optimizer.

Check the Db2 explain output!

Even writing a predicate a different way may change the filter factor enough for the optimizer to

change it optimization access path choice. Or rewriting a predicate to be indexable if not

already!

40

Predicate Rewrites

For example: Predicates AND’d vs OR’d

SELECT EMPNO, LASTNAME, EDLEVEL, GENDER

FROM EMP

WHERE DEPTNO = ‘A00’

AND (GENDER = ‘F’ OR EDLEVEL > 16)

Or

SELECT EMPNO, LASTNAME, EDLEVEL, GENDER

FROM EMP

WHERE (DEPTNO = ‘A00’ AND GENDER = ‘F’)

OR (DEPTNO = ‘A00’ AND EDLEVEL > 16)

Most likely these two queries will take different optimization paths. Which one is best? Well of

course ‘It Depends’.

41

Predicate Rewrites

For example: All of the following predicates will return the

same result set. These are the only ‘E’ in

the data.

SELECT EMPNO, LASTNAME

FROM EMP

WHERE DEPTNO IN ('E01', 'E11', 'E21')

WHERE DEPTNO LIKE ‘E%’

WHERE DEPTNO BETWEEN ‘E01’ and ‘E21’

WHERE DEPTNO IN

(SELECT DEPTNO FROM DEPT

WHERE DEPTNO LIKE ‘E%’)

Even writing a predicate a different way may change the filter factor enough for the optimizer to

change it optimization access path choice. Different predicate types have different algorithms

for generating filter factors. Sometimes what may seem like a simple change may change the

optimization.

42

“I have seen that when the developers get

educated, good SQL programming standards are in

place, and program walkthroughs are executed

correctly, incident reporting stays low, CPU costs do not
get out of control, and most performance issues are

found before promoting code to production.”

Tony Andrews

Thank you for allowing me to share some of
my experience and knowledge today!

43

The material in this presentation is further developed

in the following Themis courses:

- DB1032 – DB2 for z/OS Performance and Tuning

- DB1041 – DB2 z/OS Advanced SQL

- DB1037 – Advanced Query Tuning using IBM

Data Studio

- SQ1010 – Cross Platform Advanced SQL

DB1006 – DB2 LUW Advanced Query Tuning using

IBM Data Studio

Links to these courses may be found at: www.themisinc.com

Tony’s Email: tandrews@themisinc.com

Twitter: @tonyandrews12

44

Tony Andrews

tandrews@themisinc.com

Thank you for allowing me to share some of
my experience and knowledge today!

• I hope that you learned something new today
• I hope that you are a little more inspired when it

comes to SQL coding and performance tuning

45

	Untitled

