Database as a Service
Db2 for z/OS in a DevOps World

Paul Bartak
Distinguished Engineer
pbartak@rocketsoftware.com

4
IBMCHAMPION }(

Before you BUY DevOps, you have to DO DevOps

Process

Culture

Technology

Efficiency put into practice

Deal with the change volume, variety,
and velocity of digital transformation
More frequent releases

Retain / Enhance quality

Enabling Agile / Lean development
Fueling continuous integration &
delivery

Requires collaboration and
cooperation

Must be part of the enterprise mission
Having a seat at the "Innovation table”

Business Challenges

= The competitive landscape is more challenging

than ever
— Disrupt or be disrupted
— The Uber Effect — the sharing economy

DevOps maturity varies but is improving
— Data Friction is a more recent focus
— Databases / data sources as Code

Driving innovation
— Widespread technology
— Cloud lowers barriers to entry

Stopping / reversing downward spirals
— Core Chronic Conflict

Innovation delivery

_ Eliminating wait time Q DORA

DEVOPS RESEARCH & ASSESSMENT

2018

* <100% due to rounding

What’s this all about?

Application Infrastructure Testing Build-Cl/CD

= Db2-for-z/OS-Ops
— Db2 for z/OS operations at the speed of Developer
(remain competitive)

= DBaaS

— The services to enable Db2-for-z/OS-Ops
— REST services to compose needed automation (or
prepackaged for you)

= Data-sources as code
— Extending Infrastructure-as-code to databases

= Codified rules, thresholds, limits
— Guiderails, monitoring, reporting

= The result is efficiency (and platform relevance)
— Elevate the Developer
— Liberate the Administrator

Where’sZ? Where’s Db2?

Process

Culture

Technology

Db2 for z/OS in DevOps

Brings Db2 applications to market faster with lower costs
and less risk

Faster response for the Lines of Business

Directives to honor IT / Admin standards &
controls

Db2
for
z/OS

Minimize wait time for Developers
o Q (Wait time is where innovation comes to die)
{4BoRATO

Move Db2 towards Continuous Integration / Delivery

—— Features

sunnn|Release pennnnsn TEEEEEY EERER] ERTR)

Integrate Test Deploy

== == Pre-Prod - S B

Package

= Production

Large release cycles (months, quarters)
Slow delivery to customers/marketplace
Integration is expensive & disruptive
Problems can have a huge blast radius

Features

Integrate] Integrate Integrate
Test Test

Release

Pre-Prod P

Production =gy

Shorter cycles baked into Dev process
Faster delivery to customers/marketplace
Measured / manageable integration
Contain problems to smaller scopes
Lower stress associated with release
delivery

What about the Db2 assets? Db2 DBaaS

On-demand, Self-service, Developer Driven

A pemand [\ Pull Request /
@ Merge
~ X

Deprovisioning
Self
Service

.-p Provisioning

N

Drive Database needs in the Developers cadence by the Developer
Provision an Instance as needed within the Sprint

Fail fast, Deprovision the Instance and (perhaps) try again

Deploy changes to the Instance as needed

Can submit changes for consideration to include in the master branch
— Pull Request

Elevate
the
Developer

Modification

Database (DDL) as Code

Master

=N—7 N\ /
User
Branches

Db2 Catalog
il
[anaasl

Liberate
= Database as code (versioned DDL): the

— Logical groupings of Db2 objects (in support of Applications) Administrator

= Unites with:
— Application version control
— Infrastructure as code

= Fuels provisioning request & change deployments

Management/Administrative Directives

Managed

Environments Site Rules
’7 Subsystems Limits

Applications | Teams
Instances Users

Environment definitions to control where Provisioning takes place

Provisioning Instance Limits
Administration of Application via Teams

Liberate
the
Administrator

Storage Limits monitoring Teams, Applications, Users, and Environments

Site Rules for naming, definitions, placement
Data Steward roles for approving database changes

DevOps In a Shared Environment

T Environments Site Rules
Subsystems Limits
Application ’7
Applications | — Teams
— Instances Users
HW, z/OS, z/OS Resources
= Distributed environments provisioning can be distinct from infrastructure, up
= This could also be the case with z/OS with a virtual environment (zD&T)
= But it's more likely that the HW, z/OS, and z/OS resources (Db2, storage, etc.) will be shared Modernize
= Important elements of DevOps in a shared environment: the
— Registration of participating Db2s & Db2 objects Platform

Control where provisioning activities will take place with limits:
= Expanded, fenced authorities for Developers

— Namespace management for Instance separation

Rules for naming, placement, definitions

Storage monitoring

Easy visibility to rules, metrics, etc.

10

State-based vs. Migration-based Approaches
Differint Approaches to Database (DDL) as Code

— Upgrade
— | g3Cript State 1 State 2 State 3 State 4 State n
Analysis & — _— — — —
HEBERERENE
= | * Database
Source of
DDL

record

Source of Target

record
State Based Migration Based
= Source control system of record " Database system of record

— Established from snapshot of DB = Capture state at beginning of project
= DDL stored as version control text files - QAC?;S,:?” series of sequenced migration
* Has a Compare engine = Use culmination of scripts to achieve

— Indicate desired state desired state

— Engine optimizes change for target

11

Db2 DevOps Example Flows

Instances

lications

Source Mergg‘

Subsystems are
registered

Users, Teams set up
and assigned
Environments

Site Rules defined

Pull Request

DDL Edit

Provision

Deprovision

Instance Merge

1)

—R%oiMaster branch in git
5

User branches in git

IBM Db2 DevOps Experience for z/OS Whiteboard

BISNaNaN8l8)

DBA Sysprog Security App DevOps Release
Admin Developer Eng Mgr

Cl/CDICD

Continuous Integration
Continuous Delivery
Continuous Deployment

pr— I = - - - O . - - - EEN BN B B S S S S S e . ..
= / Fast Release Cyclea | (Traditional& o |
Demand | hlo IMS
@ Ul I Deprovision Provision 2 g'cﬁgduler l
Batch I
I Ut|||t|es
— |
A d
e I \II Spl’ln etF::p th)ce
.} I Ly Master I I I
Database I Code I Unittest—— —-Integration test Jakin care I
lterate I Perforrgnance/Recovery of Business I
— I Integrate PN &\,,, I
= Deploy 21 I I
i | - Dedicated-ish = I >§ 1" Shared
APIs ; v O« |
= | - Fluid Provsenia / - Hardened
CI/CD Tool : "55/ = 1 . I
0 Integration | 1 - Development Driven o | - Admin owned
(o ewey - Change in minutes ->weeks | { - Change in weeks -> months)
ine support (Jenkins, UCD, etc.) B
estration / Automation i

gl
J” il

(lAk])
fll

& Jenkins
Db2 for z/0S Ops — CI/CD Integration

* Sample Jenkins pipelines have been developed for:
. Provisioning
. Deprovisioning
. Reprovisioning
. Instance update

* This model can be extended to other use cases or CI/CD tools
Jenkins s

2 \searct @ pbartak 1log out

Jenkins DOE-CKZ Integration

ENABLE AUTO REFRESH
Back to Dashboard

Biive Pipeline DOE-CKZ Integration

#add description
» Changes

y Disable Project
‘_;) Build with Parameters

\y Delete Pipeline =

2# Recent Changes
A
Configure [S—

Full Stage View)
Stage View

» Rename

© Pipeline Syntax

Declarative: Pre-Validate Validate DOE DOE Instance Cloning TSs * Consolidated
Checkout SCM Entries Entries Actions ISs Reporting
Build History trend == 237ms 97ms 858ms 26s 49s 104ms
O #905 May 29, 2020 9:37 PM May 29 ; fioe
o #904 21:37
W #903 May 29, 2020 9:34 PM
[2004)

W #902 May 29, 2020 9:32 PM May 29

21:36
o #901 May 29, 2020 9:29 PM
O #900

o #899 May 29, 2020 9:16 PM

Pipelines

= There are many open source & commercial pipelines available

= Workflows orchestrate services much like a scheduler orchestrates job
streams

— REST calls

— Shell scripts

— Templates

= Scripting languages customize the experience

= Declared pipelines create Pipelines-as-Code
— The pipeline code managed under version control
— The pipeline tool checks out the pipeline code and runs it.

Jenkins

= There are many open-source options, but Jenkins tops most CI/CD
lists

There are 1000s of plug-in options to customize the experience
Pipeline syntax

Groovy is the scripting language

Dashboard for managed workflows

Simple Ul to accept variables into workflows

Can use a webhook for “headless” workflow initiation
— Use JSON payload to pass the variables

Keeps a history of pipeline execution & performance

Things to consider when composing APls

= Metadata management

— What is the source for the input to services?
— Will you require inputs from the invoker?

= Synchronous vs. Asynchronous
— Consideration for modification APIs (POST, PUT, PATCH,
DELETE)
— Many modification APIs are “fire and forget”
(asynchronous), returning a result before the work is done
— Will your pipeline tolerate this behavior?

= Polling (for asynchronous APIs)
— To validate that the APl work has been completed
— Looping on an associated GET call to check completion
status

= Getting started

— Check for documentation (Swagger)
— Use a curl-based tool (like Postman) to “unit test” the
service and validate expected results

oo o0 0

Metadata & DBaaS
= DevOps adoption

= DBaaS object definitions

— What is available & How is it being used
— Are the constructs easy for a Developer to
consume

= Ownership & editability

= Approval cycle

— Review and integration
— Drive toward schema synchronization

= Monitoring & usage
— Control for Administrators

=7 policy

applications
discoveryStatus
Instances
instances.yaml|
pull-requests
site_rules.json
subsystems.yaml|

aams.yam|

