Database as a Service

Db2 for z/OS in a DevOps World

Paul Bartak

Distinguished Engineer pbartak@rocketsoftware.com

Before you BUY DevOps, you have to DO DevOps

- Efficiency put into practice
- Deal with the change volume, variety, and velocity of digital transformation
- More frequent releases
- Retain / Enhance quality
- Enabling Agile / Lean development
- Fueling continuous integration & delivery
- Requires collaboration and cooperation
- Must be part of the enterprise mission
- Having a seat at the "Innovation table"

Business Challenges

- The competitive landscape is more challenging than ever
 - Disrupt or be disrupted
 - The Uber Effect the sharing economy
- DevOps maturity varies but is improving
 - Data Friction is a more recent focus
 - Databases / data sources as Code
- Driving innovation
 - Widespread technology
 - Cloud lowers barriers to entry
- Stopping / reversing downward spirals
 - Core Chronic Conflict
- Innovation delivery
 - Eliminating wait time

What's this all about?

Application Infrastructure Testing Build-CI/CD Where's Z? Where's Db2?

Db2-for-z/OS-Ops

 Db2 for z/OS operations at the speed of Developer (remain competitive)

DBaaS

- The services to enable Db2-for-z/OS-Ops
- REST services to compose needed automation (or prepackaged for you)

Data-sources as code

Extending Infrastructure-as-code to databases

Codified rules, thresholds, limits

- Guiderails, monitoring, reporting
- The result is efficiency (and platform relevance)
 - Elevate the Developer
 - Liberate the Administrator

Db2 for z/OS in DevOps

Brings Db2 applications to market faster with lower costs and less risk

Faster response for the Lines of Business

Directives to honor IT / Admin standards & controls

Minimize wait time for Developers
(Wait time is where innovation comes to die)

Move Db2 towards Continuous Integration / Delivery

- Large release cycles (months, quarters)
- Slow delivery to customers/marketplace
- Integration is expensive & disruptive
- Problems can have a huge blast radius

- Shorter cycles baked into Dev process
- Faster delivery to customers/marketplace
- Measured / manageable integration
- Contain problems to smaller scopes
- Lower stress associated with release delivery

On-demand, Self-service, Developer Driven

Elevate the Developer

- Drive Database needs in the Developers cadence by the Developer
- Provision an Instance as needed within the Sprint
- Fail fast, Deprovision the Instance and (perhaps) try again
- Deploy changes to the Instance as needed
- Can submit changes for consideration to include in the master branch
 - Pull Request

Database (DDL) as Code

- Database as code (versioned DDL):
 - Logical groupings of Db2 objects (in support of Applications)
- Unites with:
 - Application version control
 - Infrastructure as code
- Fuels provisioning request & change deployments

Liberate the Administrator

Management/Administrative Directives

- Environment definitions to control where Provisioning takes place
- Provisioning Instance Limits
- Administration of Application via Teams
- Storage Limits monitoring Teams, Applications, Users, and Environments
- Site Rules for naming, definitions, placement
- Data Steward roles for approving database changes

Liberate the Administrator

DevOps In a Shared Environment

- Distributed environments provisioning can be distinct from infrastructure, up
- This could also be the case with z/OS with a virtual environment (zD&T)
- But it's more likely that the HW, z/OS, and z/OS resources (Db2, storage, etc.) will be shared
- Important elements of DevOps in a shared environment:

 Registration of participating Db2s & Db2 objects

 - Control where provisioning activities will take place with limits:
 - Expanded, fenced authorities for Developers
 - Namespace management for Instance separation
 - Rules for naming, placement, definitions
 - Storage monitoring
 - Easy visibility to rules, metrics, etc.

State-based vs. Migration-based Approaches

State Based

- Source control system of record
 - Established from snapshot of DB
- DDL stored as version control text files
- Has a Compare engine
 - Indicate desired state
 - Engine optimizes change for target

Migration Based

- Database system of record
- Capture state at beginning of project
- Maintain series of sequenced migration scripts
- Use culmination of scripts to achieve desired state

Db2 DevOps Example Flows

- Subsystems are registered
- Users, Teams set up and assigned Environments
- Site Rules defined

Instances

IBM Db2 DevOps Experience for z/OS Whiteboard

CI/CD/CD

- Continuous Integration
- Continuous Delivery
- Continuous Deployment

Pipeline support (Jenkins, UCD, etc.)
Orchestration / Automation

Deploy Promote

Db2 for z/OS Ops — CI/CD Integration Sample Jenkins pipelines have been developed for:

- - **Provisioning**
 - Deprovisioning
 - Reprovisioning
 - Instance update
- This model can be extended to other use cases or CI/CD tools

Pipelines

- There are many open source & commercial pipelines available
- Workflows orchestrate services much like a scheduler orchestrates job streams
 - REST calls
 - Shell scripts
 - Templates
- Scripting languages customize the experience
- Declared pipelines create Pipelines-as-Code
 - The pipeline code managed under version control
 - The pipeline tool checks out the pipeline code and runs it.

Jenkins

There are many open-source options, but Jenkins tops most CI/CD lists

There are 1000s of plug-in options to customize the experience

Pipeline syntax

Groovy is the scripting language

Dashboard for managed workflows

Simple UI to accept variables into workflows

Can use a webhook for "headless" workflow initiation

Use JSON payload to pass the variables

Keeps a history of pipeline execution & performance

Things to consider when composing APIs

Metadata management

- What is the source for the input to services?
- Will you require inputs from the invoker?

Synchronous vs. Asynchronous

- Consideration for modification APIs (POST, PUT, PATCH, DELETE)
- Many modification APIs are "fire and forget" (asynchronous), returning a result before the work is done
 – Will your pipeline tolerate this behavior?

Polling (for asynchronous APIs)

- To validate that the API work has been completed
 Looping on an associated GET call to check completion status

Getting started

- Check for documentation (Swagger)
- Use a curl-based tool (like Postman) to "unit test" the service and validate expected results

Metadata & DBaaS

- DevOps adoption
- DBaaS object definitions
 - What is available & How is it being used
 - Are the constructs easy for a Developer to consume
- Ownership & editability
- Approval cycle
 - Review and integration
 - Drive toward schema synchronization
- Monitoring & usage
 - Control for Administrators

