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Reorgs are recommended, because  (1|2)
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• Someone executed a certain alter table command
• The following is the full list of REORG-recommended ALTER statements that

cause a version change and place the table into a REORG-pending state:
• DROP COLUMN
• ALTER COLUMN SET NOT NULL
• ALTER COLUMN DROP NOT NULL
• ALTER COLUMN SET DATA TYPE, except in the following situations:

• Increasing the length of a VARCHAR or VARGRAPHIC column
• Decreasing the length of a VARCHAR or VARGRAPHIC column without truncating trailing blanks from

existing data, when no indexes exist on the column

• Two (or more) alter commands in one UOW increase the counter by 1



Reorgs are recommended, because  (2|2)
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• up to 3 single reorg recommended operations allowed
• some commands possible if table in reorg pending state: 
• Drop table
• Rename table
• Truncate table
• Reorg table (offline and full table only)

• Check for current counters: SYSIBMADM.ADMINTABINFO (use a few
columns and a where clause to filter for specific table(s) or schema)



Reorgs are needed (reorg pending), because
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• Reorg recommended counter is >0 / reorg pending state
• Regulare tablespace has reached max pages limit and has to be converted

to large (you will need a reorg indexes to „activate“ large RIDs and make
table „insertable“ again)



Reorgs are really recommended, because (1|2)
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• Reorgcheck shows at least 2* on a table or 3* on an index (data is really
bad fragmented)
• Performance is slow (having overflow records), like after adding new

columns or heavy updates on variable columns with larger data
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Reorgs are really recommended, because (2|2)
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• compression is now inplace (generate compression dictionary)
• Generate a dictionary because of high amount of new data that is compressed

badly
• After a load operation as records used to generate initial dictionary are a bad

sample
• After changing from dictionary compression to adaptiv compression

• Everytime you convert tablespace from regular to large



how execute a reorg (1|3)
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• via command line
• db2 „reorg table myschema.mytable“

• Via SQL
• CALL SYSPROC.ADMIN_CMD ('REORG TABLE myschema.mytable')
• CALL SYSPROC.ADMIN_REVALIDATE_DB_OBJECTS('table', 'MYSCHEMA', 'MYTABLE‘)

only for tables in reorg pending state, will execute and runstats for those



how execute a reorg (2|3)
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• Can be executed for a table
• db2 „reorg table myschema.mytable“

• Can be executed for a data partition of a table (range parted)
• db2 „reorg table myschema.mytable on data partition part001“

• Can be executed for a database partition of a table (DPF)
• db2 „reorg table myschema.mytable on DBPARTITIONNUM (1)“



how execute a reorg (3|3)
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• Can be executed for all indexes of a table
• db2 „reorg indexes all for table myschema.mytable“

• Can be executed for a given index of a table
• db2 „reorg index myindex for table myschema.mytable“
• Only supported for:

• Nonpartitioned indexes on a data partitioned table that are not block indexes
• Any index on any permanent table if CLEANUP ALL is specified and RECLAIM EXTENTS is not 

specified



Pitfalls when executing a reorg (1|3)
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• Table reorg always recreates all indexes as well
• Maybe better to drop idx / reorg table / create idx (especially when reorg gets

logged in hadr -> avoid log full)

• Reorg a table partion with non parted indexes will lead to a reorg of the
non parted idx for the whole table
• If partitioned table is in reorg pending and is having non partitioned

indexes you will have to reorg whole table at once (not per partition)
• Inplace / online reorg is not allowed when in reorg pending state



Pitfalls when executing a reorg (2|3)

12

• By default lobs are not reorganized (use parameter LONGLOBDATA)
• By default db2 uses the same tablespace for the working copy (if

partitioned it will use the tablespace of that partition)
• At least twice space is needed in the same tablespace or specify a system temp

space to write working copy in that tablespace

• Reorg on the complete partitioned table will result in 1 partition reorg at a 
time (at least twice space if largest partition is needed)
• „The original table might be available for queries until the replace

operation starts, depending on the access clause“ (classic/offline reorg)



Pitfalls when executing a reorg (3|3)
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• Allow read access on partitioned table only supported when having no non 
partitioned indexes (otherwise it will be allow no access) - all other
partitions would be read and writeable
• When having a non partitioned index the whole table will be set in no

access mode (not only the given partition)
• By default no automatic parallelism for a table (it will always use a single

thread, one partition after another)



How to avoid reorgs
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• Use more alter table statements in one OUW to avoid getting from reorg
recommended to reorg pending status
• Minimize the usage of VARCHAR, VARGRAPHIG to avoid overflows
• Use ITC (Insert Time Clustering) tables - data and indexes will be stored

and deleted in blocks - no reorg needed (and not supported) and having a 
new not usable column and index to store the insert time
• Use admin move table before it comes to reorg pending situation



Monitoring a reorg
• GET SNAPSHOT FOR TABLES command
• db2 get snapshot for tables on sample

• db2pd -reorg command
• db2pd -db sample -reorg -repeat 60

• List History Reorg:
• db2 list history reorg all for sample

• Select from the SYSIBMADM.SNAPTAB_REORG
• INPLACE_REORG_STATUS in SYSPROC.ADMIN_GET_TAB_INFO
• Use third party monitoring tool
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Classic vs. inplace (offline vs. online) (1|2)
• Classic
• „No“ access to the table
• Uses a copy approach, building a full

copy of the table
• Fast
• Perfectly clustered data once

finished
• Indexes gets rebuild automatically
• Can use temp tablespace to reduce

needed storage in tablespace

• Inplace
• Full access to the table
• Rows are moved within the table, 

sequentielly
• Slow
• Maybe inperfect clustering

depending on sql during reorg
• Indexes maintained but not rebuild
• Low storage requirement as using

source object to move data
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Classic vs. inplace (offline vs. online) (2|2)
• Classic
• Large space requirement (shadow

copy)
• No control during execution (has to

be restarted if it stops)
• Not recoverable
• Needs fewer TRX Log
• Benefit once the reorg completes
• Suitable for large tables

• Inplace
• Small space requirement (moving

data in existing object)
• Good control during the execution

(pause, resume, start, stop)
• Fully recoverable
• Needs more TRX Log
• Direct benefit right after reorg starts
• Not suitable for large tables (may

never finish)
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Classic workflow (basic)
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Inplace workflow (basic)
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Reorg options for partitioned Tables (1|4)
• A reorg can run on a single partition of range partitioned table, allowing

access on all other partitions during the execution
• Multiple partition reorgs can run in parallel with following criteria:
• Each REORG command must specify a different partition with the ON DATA 

PARTITION clause.
• Each REORG command must use the ALLOW NO ACCESS mode to restrict access to

the data partitions.
• The partitioned table must have only partitioned indexes if issuing REORG 

TABLE commands. No nonpartitioned indexes (except system-generated XML path
indexes) can be defined on the table.
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Reorg options for partitioned Tables (2|4)
• Restrictions for an index to be partitionable
• To be partitioned the index will have to include the distribution key
create index parted_1 on myschema.mytable (distri_col,col1) 
partitioned
• If distribution key is/can not be included, the index can be partitioned (if index is

not unique) and the column will be included (hidden) -> maybe this index will be
used differently in SQL queries (Data-partitioned secondary index (DPSI) on z/OS)
create index parted_2 on myschema.mytable (col1) partitioned
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Reorg options for partitioned Tables (3|4)
• Examples:
• Table is partitioned by quarters of a year, reorg per quarter or in parallel

• REORG TABLE myschema.mytable ALLOW NO ACCESS ON DATA PARTITION P1
• REORG TABLE myschema.mytable ALLOW NO ACCESS ON DATA PARTITION P2
• REORG TABLE myschema.mytable ALLOW NO ACCESS ON DATA PARTITION P3
• REORG TABLE myschema.mytable ALLOW NO ACCESS ON DATA PARTITION P4

• What also is possible to be excuted in parallel
• REORG INDEXES ALL FOR TABLE myschema.mytable ALLOW NO ACCESS ON DATA 
PARTITION P1

• REORG TABLE myschema.mytable ALLOW NO ACCESS ON DATA PARTITION P2
• REORG INDEXES ALL FOR TABLE myschema.mytable ALLOW NO ACCESS ON DATA 
PARTITION P3
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Reorg options for partitioned Tables (4|4)
• Recommendations:
• Use separate/dedicated tablespaces for every partition or group partitions if having 

several disks/volumes per path
• Parallelism should not be higher than number of (free) Cores and number of 

disks/Volumes (one reorg will use full power of one core and underlying storage)
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Admin Move Table - Basics (1|3)
• System Procedure officially introduced in v9.7
• Basically developed to move on table from one tablespace to another

without blocking the table for UID
• Easy to use but flexibel for advanced usage (one command for the

complete workflow vs. one command per step and more customization
options)
• Columns can be added/dropped -> minize risk of reorg pending
• Improvements over last versions, getting less restrictions and more

options
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Admin Move Table - Basics (2|3)
• Admin Move Table has basically 4 needed steps:
• INIT: Verifies requirements, creates target and staging tables and triggers 
• COPY: Copies data from source to target table (Insert or Load)
• REPLAY: Move Data from staging to target (repeat this step if first execution took 

long time)
• SWAP: Rename the target table to source table, rename indexes, remove staging 

table, remove source table (optionally keep it)
• And just one to go complete through, to terminate and to clean:
• Move: Performs INIT, COPY, REPLAY, and SWAP operations in one step
• Term: Terminates a running or killed table move
• CANCEL: clears up all intermediate data
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Admin Move Table - Basics (3|3)
• Two Procedure Methods (easy and more options, non-optional: 

tabschema, tabname and operation)
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Admin Move Table - Init Phase
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Admin Move Table - Copy Phase
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Admin Move Table - Replay Phase
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Admin Move Table - Swap Phase
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Admin Move Table - alternative to reorg
• Can only be used for „really“ reorg recommended not for reorg pending

tables (use it before having reorg pending status)
• More or less fully online - during swap phase X lock needed on source, 

rebinds needed after the swap
• Needs at least twice the space as source (maybe less if compression rate 

improves or had a lot of gaps in source)
• Reads data from source by default with order by if a clustering index exist

or cluster option is specified (and clustering index, uniq index or primary
key exists or an alternative index to use has been specified with
ADMIN_MOVE_TABLE_UTIL)
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Admin Move Table - with an extra reorg
• Admin Move Table has the option to explicitly perform a reorg on target

table during the swap step right before swap
• Only method to get an optimal compression dictionary for xml columns
• Set the REORG option at any point up to and including the SWAP phase
• Not recommended for „normal“ or every day use (e.g. to

compact/compress data/remove gaps/sort etc. it is not needed)
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Admin Move Table - example

33



Admin Move Table - to avoid reorg pending (1|3)
• Use admin move table for your DDL changes (change the target)
• Drop / add column
• Change data type (when types are compatible and column name persists)
• Change nullable options
• Primary Key

• Option1
• Create your target table in forehand with structure of next version (only table!)

• Option2
• Use parameter coldef of admin move table to define future structure of the table
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Admin Move Table - to avoid reorg pending (2|3)
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Admin Move Table - to avoid reorg pending (3|3)
('TESTSCHEMA', 'TESTTABLE', '','','','','',‘‘, 
'col1 int not null primary key,
col2 int not null, col4 varchar(255)', '','MOVE')";
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Performance Comparison - Backround (1|2) 
• Project goal: verify reorg performance for the Db2 LUW database
• Test-System 
• AWS EC2 instance of the r5.12xlarge type
• 48 vCPU
• 384 GiB Memory
• 8 EBS Volumes with 1TB and limited to 10.000 IOPS for db2 data

• Test-Tables (partitioned)
• Tab1 1.201.894 pages (32k) à ~36GB | 142.572.100 Rows
• Tab2    698.711 pages (32k) à ~21GB |    98.459.199 Rows

• Roughly gone through 150 test steps in total
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Performance Comparison - Backround (2|2) 
• Recommended final solution has to be simple and out-of-the-box
• Data had the size of a test-system first, increased over time to see production

like runtimes
• Both tested tables are the biggest in production, are having a clustered index

and are partitioned
• Tab1 has no nonpartitioned index
• Tab2 has some nonpartitioned index (à drop/create approach)
• Goal: Achive maximum ressource consumption with high parallelism
• à Parallel: all 16 Partitions at once in parallel
• à Test: normal reorg vs. parallel (per partition) vs. admin move table
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Performance Comparison - default vs. parallel reorg 
vs. admin_move_table
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Performance Comparison - scale-out parallel reorg

orig. Data
10times 
data

20times 
data

TAB1 01:01 09:25 18:10

TAB2 03:19 20:58 38:17
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Performance Comparison - increase parallelism
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Summary
• If you need fast reorg performance, use range partitioned tables (with a 

well balanced distribution key) and the reorg utility in parallel
• Reorg as many partitions in parallel as possible (rule of thumb when

activity is low: Number of Cores -1, else: number of “free“ cores)
• Avoid nonpartitioned indexes (or drop/recreate those)
• Use Admin Move Table for most of your every day reorgs (reorg

recommended / improve performance / remove gaps)
• Avoid Reorg Pending, use admin move table instead!
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Sources
• https://www.sap.com/documents/2015/07/3080d083-5b7c-0010-82c7-

eda71af511fa.html

43
D07



Speaker: Markus Fraune
Company: ITGAIN
Email Address: markus.fraune@itgain.de
Twitter: @maggus_f

Don’t forget to fill out a session evaluation!


