
Db2

Db2 reorg
unleash the full power of the utility

Markus Fraune, ITGAIN

• Basics (why and how to reorg)
• Classic vs inplace
• How to run a reorg in parallel
• Alternative to reorg (amt)
• Performance Comparison

Agenda

Reorgs are recommended, because (1|2)

3

• Someone executed a certain alter table command
• The following is the full list of REORG-recommended ALTER statements that

cause a version change and place the table into a REORG-pending state:
• DROP COLUMN
• ALTER COLUMN SET NOT NULL
• ALTER COLUMN DROP NOT NULL
• ALTER COLUMN SET DATA TYPE, except in the following situations:

• Increasing the length of a VARCHAR or VARGRAPHIC column
• Decreasing the length of a VARCHAR or VARGRAPHIC column without truncating trailing blanks from

existing data, when no indexes exist on the column

• Two (or more) alter commands in one UOW increase the counter by 1

Reorgs are recommended, because (2|2)

4

• up to 3 single reorg recommended operations allowed
• some commands possible if table in reorg pending state:
• Drop table
• Rename table
• Truncate table
• Reorg table (offline and full table only)

• Check for current counters: SYSIBMADM.ADMINTABINFO (use a few
columns and a where clause to filter for specific table(s) or schema)

Reorgs are needed (reorg pending), because

5

• Reorg recommended counter is >0 / reorg pending state
• Regulare tablespace has reached max pages limit and has to be converted

to large (you will need a reorg indexes to „activate“ large RIDs and make
table „insertable“ again)

Reorgs are really recommended, because (1|2)

6

• Reorgcheck shows at least 2* on a table or 3* on an index (data is really
bad fragmented)
• Performance is slow (having overflow records), like after adding new

columns or heavy updates on variable columns with larger data

Page1

Page2

Page3

Page4

Page1

Page2

Page3

Page4

Reorgs are really recommended, because (2|2)

7

• compression is now inplace (generate compression dictionary)
• Generate a dictionary because of high amount of new data that is compressed

badly
• After a load operation as records used to generate initial dictionary are a bad

sample
• After changing from dictionary compression to adaptiv compression

• Everytime you convert tablespace from regular to large

how execute a reorg (1|3)

8

• via command line
• db2 „reorg table myschema.mytable“

• Via SQL
• CALL SYSPROC.ADMIN_CMD ('REORG TABLE myschema.mytable')
• CALL SYSPROC.ADMIN_REVALIDATE_DB_OBJECTS('table', 'MYSCHEMA', 'MYTABLE‘)

only for tables in reorg pending state, will execute and runstats for those

how execute a reorg (2|3)

9

• Can be executed for a table
• db2 „reorg table myschema.mytable“

• Can be executed for a data partition of a table (range parted)
• db2 „reorg table myschema.mytable on data partition part001“

• Can be executed for a database partition of a table (DPF)
• db2 „reorg table myschema.mytable on DBPARTITIONNUM (1)“

how execute a reorg (3|3)

10

• Can be executed for all indexes of a table
• db2 „reorg indexes all for table myschema.mytable“

• Can be executed for a given index of a table
• db2 „reorg index myindex for table myschema.mytable“
• Only supported for:

• Nonpartitioned indexes on a data partitioned table that are not block indexes
• Any index on any permanent table if CLEANUP ALL is specified and RECLAIM EXTENTS is not

specified

Pitfalls when executing a reorg (1|3)

11

• Table reorg always recreates all indexes as well
• Maybe better to drop idx / reorg table / create idx (especially when reorg gets

logged in hadr -> avoid log full)

• Reorg a table partion with non parted indexes will lead to a reorg of the
non parted idx for the whole table
• If partitioned table is in reorg pending and is having non partitioned

indexes you will have to reorg whole table at once (not per partition)
• Inplace / online reorg is not allowed when in reorg pending state

Pitfalls when executing a reorg (2|3)

12

• By default lobs are not reorganized (use parameter LONGLOBDATA)
• By default db2 uses the same tablespace for the working copy (if

partitioned it will use the tablespace of that partition)
• At least twice space is needed in the same tablespace or specify a system temp

space to write working copy in that tablespace

• Reorg on the complete partitioned table will result in 1 partition reorg at a
time (at least twice space if largest partition is needed)
• „The original table might be available for queries until the replace

operation starts, depending on the access clause“ (classic/offline reorg)

Pitfalls when executing a reorg (3|3)

13

• Allow read access on partitioned table only supported when having no non
partitioned indexes (otherwise it will be allow no access) - all other
partitions would be read and writeable
• When having a non partitioned index the whole table will be set in no

access mode (not only the given partition)
• By default no automatic parallelism for a table (it will always use a single

thread, one partition after another)

How to avoid reorgs

14

• Use more alter table statements in one OUW to avoid getting from reorg
recommended to reorg pending status
• Minimize the usage of VARCHAR, VARGRAPHIG to avoid overflows
• Use ITC (Insert Time Clustering) tables - data and indexes will be stored

and deleted in blocks - no reorg needed (and not supported) and having a
new not usable column and index to store the insert time
• Use admin move table before it comes to reorg pending situation

Monitoring a reorg
• GET SNAPSHOT FOR TABLES command
• db2 get snapshot for tables on sample

• db2pd -reorg command
• db2pd -db sample -reorg -repeat 60

• List History Reorg:
• db2 list history reorg all for sample

• Select from the SYSIBMADM.SNAPTAB_REORG
• INPLACE_REORG_STATUS in SYSPROC.ADMIN_GET_TAB_INFO
• Use third party monitoring tool

15

Classic vs. inplace (offline vs. online) (1|2)
• Classic
• „No“ access to the table
• Uses a copy approach, building a full

copy of the table
• Fast
• Perfectly clustered data once

finished
• Indexes gets rebuild automatically
• Can use temp tablespace to reduce

needed storage in tablespace

• Inplace
• Full access to the table
• Rows are moved within the table,

sequentielly
• Slow
• Maybe inperfect clustering

depending on sql during reorg
• Indexes maintained but not rebuild
• Low storage requirement as using

source object to move data

16

Classic vs. inplace (offline vs. online) (2|2)
• Classic
• Large space requirement (shadow

copy)
• No control during execution (has to

be restarted if it stops)
• Not recoverable
• Needs fewer TRX Log
• Benefit once the reorg completes
• Suitable for large tables

• Inplace
• Small space requirement (moving

data in existing object)
• Good control during the execution

(pause, resume, start, stop)
• Fully recoverable
• Needs more TRX Log
• Direct benefit right after reorg starts
• Not suitable for large tables (may

never finish)

17

Classic workflow (basic)

18

Page1

Page2

Page3

Page4

Page1

Page2

Page3

Page4

Page1

Page2

Page3

Page4

Page1

Page2

Page3

Page4

Inplace workflow (basic)
Page1

Page2

Page3

Page4

Page1

Page2

Page1

Page2

Page3

Page4

Page*

Page1

Page2

Page3

Page4

Page*

Page3

Page4

Reorg options for partitioned Tables (1|4)
• A reorg can run on a single partition of range partitioned table, allowing

access on all other partitions during the execution
• Multiple partition reorgs can run in parallel with following criteria:
• Each REORG command must specify a different partition with the ON DATA

PARTITION clause.
• Each REORG command must use the ALLOW NO ACCESS mode to restrict access to

the data partitions.
• The partitioned table must have only partitioned indexes if issuing REORG

TABLE commands. No nonpartitioned indexes (except system-generated XML path
indexes) can be defined on the table.

20

Reorg options for partitioned Tables (2|4)
• Restrictions for an index to be partitionable
• To be partitioned the index will have to include the distribution key
create index parted_1 on myschema.mytable (distri_col,col1)
partitioned
• If distribution key is/can not be included, the index can be partitioned (if index is

not unique) and the column will be included (hidden) -> maybe this index will be
used differently in SQL queries (Data-partitioned secondary index (DPSI) on z/OS)
create index parted_2 on myschema.mytable (col1) partitioned

21

Reorg options for partitioned Tables (3|4)
• Examples:
• Table is partitioned by quarters of a year, reorg per quarter or in parallel

• REORG TABLE myschema.mytable ALLOW NO ACCESS ON DATA PARTITION P1
• REORG TABLE myschema.mytable ALLOW NO ACCESS ON DATA PARTITION P2
• REORG TABLE myschema.mytable ALLOW NO ACCESS ON DATA PARTITION P3
• REORG TABLE myschema.mytable ALLOW NO ACCESS ON DATA PARTITION P4

• What also is possible to be excuted in parallel
• REORG INDEXES ALL FOR TABLE myschema.mytable ALLOW NO ACCESS ON DATA
PARTITION P1

• REORG TABLE myschema.mytable ALLOW NO ACCESS ON DATA PARTITION P2
• REORG INDEXES ALL FOR TABLE myschema.mytable ALLOW NO ACCESS ON DATA
PARTITION P3

22

Reorg options for partitioned Tables (4|4)
• Recommendations:
• Use separate/dedicated tablespaces for every partition or group partitions if having

several disks/volumes per path
• Parallelism should not be higher than number of (free) Cores and number of

disks/Volumes (one reorg will use full power of one core and underlying storage)

23

myPartedTable

Partition1

Partition2

Partition4

Partition3

Tablespace1

Tablespace2

Tablespace4

Tablespace3

Volume1

Volume2

Volume4

Volume3
myPartedTable

Partition1

Partition2

Partition4

Partition3

Tablespace1

Tablespace2

Volume1

Volume2

Volume4

Volume3

Admin Move Table - Basics (1|3)
• System Procedure officially introduced in v9.7
• Basically developed to move on table from one tablespace to another

without blocking the table for UID
• Easy to use but flexibel for advanced usage (one command for the

complete workflow vs. one command per step and more customization
options)
• Columns can be added/dropped -> minize risk of reorg pending
• Improvements over last versions, getting less restrictions and more

options

24

Admin Move Table - Basics (2|3)
• Admin Move Table has basically 4 needed steps:
• INIT: Verifies requirements, creates target and staging tables and triggers
• COPY: Copies data from source to target table (Insert or Load)
• REPLAY: Move Data from staging to target (repeat this step if first execution took

long time)
• SWAP: Rename the target table to source table, rename indexes, remove staging

table, remove source table (optionally keep it)
• And just one to go complete through, to terminate and to clean:
• Move: Performs INIT, COPY, REPLAY, and SWAP operations in one step
• Term: Terminates a running or killed table move
• CANCEL: clears up all intermediate data

25

Admin Move Table - Basics (3|3)
• Two Procedure Methods (easy and more options, non-optional:

tabschema, tabname and operation)

26

Admin Move Table - Init Phase

27

Page1

Page2

Page3

Page4

Page1

Page2

Page3

Page4

Page1

Page2

Page3

Page4

Staging

TargetSource

Trigger

Admin Move Table - Copy Phase

28

Page1

Page2

Page3

Page4

Page2

Page3

Page4

Staging

TargetSource

Trigger

Page1

Page2

Page3

Page4

Insert
or

Load

Page5

Page1

Admin Move Table - Replay Phase

29

Page1

Page2

Page3

Page4

Page2

Page3

Page4

Staging

TargetSource

Trigger

Page5

Page1 Insert

Page1

Page2

Page3

Page4

Admin Move Table - Swap Phase

30

Page1

Page2

Page3

Page4

Page2

Page3

Page4

Staging à gets deleted

Target à Rename to final nameSource à Gets deleted

Trigger --> get deleted

Page5

Page1

Page1

Page2

Page3

Page4

Admin Move Table - alternative to reorg
• Can only be used for „really“ reorg recommended not for reorg pending

tables (use it before having reorg pending status)
• More or less fully online - during swap phase X lock needed on source,

rebinds needed after the swap
• Needs at least twice the space as source (maybe less if compression rate

improves or had a lot of gaps in source)
• Reads data from source by default with order by if a clustering index exist

or cluster option is specified (and clustering index, uniq index or primary
key exists or an alternative index to use has been specified with
ADMIN_MOVE_TABLE_UTIL)

31

Admin Move Table - with an extra reorg
• Admin Move Table has the option to explicitly perform a reorg on target

table during the swap step right before swap
• Only method to get an optimal compression dictionary for xml columns
• Set the REORG option at any point up to and including the SWAP phase
• Not recommended for „normal“ or every day use (e.g. to

compact/compress data/remove gaps/sort etc. it is not needed)

32

Admin Move Table - example

33

Admin Move Table - to avoid reorg pending (1|3)
• Use admin move table for your DDL changes (change the target)
• Drop / add column
• Change data type (when types are compatible and column name persists)
• Change nullable options
• Primary Key

• Option1
• Create your target table in forehand with structure of next version (only table!)

• Option2
• Use parameter coldef of admin move table to define future structure of the table

34

Admin Move Table - to avoid reorg pending (2|3)

35

Admin Move Table - to avoid reorg pending (3|3)
('TESTSCHEMA', 'TESTTABLE', '','','','','',‘‘,
'col1 int not null primary key,
col2 int not null, col4 varchar(255)', '','MOVE')";

36

Performance Comparison - Backround (1|2)
• Project goal: verify reorg performance for the Db2 LUW database
• Test-System
• AWS EC2 instance of the r5.12xlarge type
• 48 vCPU
• 384 GiB Memory
• 8 EBS Volumes with 1TB and limited to 10.000 IOPS for db2 data

• Test-Tables (partitioned)
• Tab1 1.201.894 pages (32k) à ~36GB | 142.572.100 Rows
• Tab2 698.711 pages (32k) à ~21GB | 98.459.199 Rows

• Roughly gone through 150 test steps in total

37

Performance Comparison - Backround (2|2)
• Recommended final solution has to be simple and out-of-the-box
• Data had the size of a test-system first, increased over time to see production

like runtimes
• Both tested tables are the biggest in production, are having a clustered index

and are partitioned
• Tab1 has no nonpartitioned index
• Tab2 has some nonpartitioned index (à drop/create approach)
• Goal: Achive maximum ressource consumption with high parallelism
• à Parallel: all 16 Partitions at once in parallel
• à Test: normal reorg vs. parallel (per partition) vs. admin move table

38

Performance Comparison - default vs. parallel reorg
vs. admin_move_table

39

13:48

01:01

09:14

00:00

02:53

05:46

08:38

11:31

14:24

17:17

20:10

23:02

25:55

TAB1 TAB1 TAB1

Reorg seriell Reorg parallel ADMIN MOVE TABLE

Duration in mm:ss

20:17

03:19

15:24

00:00

02:53

05:46

08:38

11:31

14:24

17:17

20:10

23:02

25:55

TAB2 TAB2 TAB2

Reorg seriell Reorg parallel (dr + cr
idx)

ADMIN MOVE TABLE

Duration in mm:ss

142Mio Rows, 36GB, all partitioned 98Mio Rows, 21GB, not all partitioned

Performance Comparison - scale-out parallel reorg

orig. Data
10times
data

20times
data

TAB1 01:01 09:25 18:10

TAB2 03:19 20:58 38:17

40

0

0,2

0,4

0,6

0,8

1

1,2

orig. Data 10times data 20times data

Scale-Out Reorg Performance - Parallel Reorg

TAB1 TAB2

Duration parallel reorg mm:ss

It gets faster when data increases!

TAB1: 142Mio Rows, 36GB, all partitioned TAB2: 98Mio Rows, 21GB, not all partitioned

Performance Comparison - increase parallelism

41

18:10

38:17

11:27

29:42

00:00

07:12

14:24

21:36

28:48

36:00

43:12

TAB1 TAB2

Test 16 vs 32 Partitions (20times data) duration in mm:ss

16 Partitions 32 Partitions

142Mio Rows, 36GB, all partitioned 98Mio Rows, 21GB, not all partitioned

Summary
• If you need fast reorg performance, use range partitioned tables (with a

well balanced distribution key) and the reorg utility in parallel
• Reorg as many partitions in parallel as possible (rule of thumb when

activity is low: Number of Cores -1, else: number of “free“ cores)
• Avoid nonpartitioned indexes (or drop/recreate those)
• Use Admin Move Table for most of your every day reorgs (reorg

recommended / improve performance / remove gaps)
• Avoid Reorg Pending, use admin move table instead!

42

Sources
• https://www.sap.com/documents/2015/07/3080d083-5b7c-0010-82c7-

eda71af511fa.html

43
D07

Speaker: Markus Fraune
Company: ITGAIN
Email Address: markus.fraune@itgain.de
Twitter: @maggus_f

Don’t forget to fill out a session evaluation!

