
Virtual Conference | March 09, 2022

Using Machine Learning in the Db2 Optimizer

Calisto Zuzarte, IBM

WDUG
Wisconsin Db2 Users Group

Agenda

• Motivation

• Cardinality Estimation

• Db2 11.5.6 ML Optimizer Tech Preview
• Architecture

• Experimental Results

Motivation

Evolution Of the Database Optimizer

RULE BASED
CODE

STATISTICS BASED
COST MODEL

MACHINE LEARNING
MODEL

1980 2020

Optimizer Challenges

Query complexity, higher data volumes and demanding user
expectations require an easily adaptable and stable solution Performance Stability

Minimum customer tuning needed to adapt to specific
characteristics of user data, workloads and environmentTuning Effort

Minimum effort needed to the optimizer with new features,
configuration changes and hardware upgrades

Development
Effort

Artificial Intelligence (AI) is the simulation of
human intelligence in machines that are
programmed to think like humans.

Machine Learning provides AI systems the
ability to automatically learn and improve
from experience without being explicitly
programmed.

A Neural Network is a series of algorithms
that tries to recognize underlying
relationships in a set of data using
interconnected nodes much like neurons in
a human brain

Infusing AI in Db2

Benefits of Machine Learning

Adapt to specific
user data
characteristics

01
Adapt to specific
user query
workloads

02
Learn from
optimizer and
run-time
feedback

03

Machine Learning Goals

Make performance tuning simple with automation Automate Everything

By constantly learning and improving the model
Achieve Reliable

Performance

By training the model in the specific user environment
Simplify Optimizer

Development

Gradually replace traditional optimizer techniquesInfuse ML Gradually

A Phased Approach

Phase 3 Other Aspects

Phase 2 Join Planning

Phase 1 Cardinality Estimation

Cardinality Estimation

Cardinality Estimation

Cardinality Estimation is the number of rows input to or output
from an operator

Cost based optimizers rely on reasonably accurate cardinality

Bad cardinality estimation is often the primary source of query
performance problem tickets from customers

Tuning For Good Cardinality Estimates

1136.92
HSJOIN
(4)
90013
67956

/----------+----------\

2e+06 1136.92
TBSCAN ^HSJOIN
(5) (6)
469.792 89537
344 67612
| /-------+-------\

2e+06 2.87997e+08 0.288374
CO-TABLE: DB2INST1 TBSCAN TBSCAN

CUSTOMER (7) (8)
Q1 88366.6 274.207

67383 229
| |

2.87997e+08 73049
CO-TABLE: DB2INST1 DB2INST1
STORE_SALES DATE_DIM

Q3 Q2

Actual : 10,113,972

457723
HSJOIN
(4)
90013
67956

/----------+----------\

2e+06 457723
TBSCAN ^HSJOIN
(5) (6)
469.792 89537
344 67612
| /-------+-------\

2e+06 2.87997e+08 116.099
CO-TABLE: DB2INST1 TBSCAN TBSCAN

CUSTOMER (7) (8)
Q1 88366.6 274.207

67383 229
| |

2.87997e+08 73049
CO-TABLE: DB2INST1 DB2INST1

STORE_SALES DATE_DIM
Q3 Q2

9.05383e+06
^HSJOIN
(4)
90083.4
67956

/---------+----------\

9.05383e+06 2e+06
^HSJOIN TBSCAN
(5) (8)
89564.4 469.792
67612 344

/-------+-------\ |

2.87997e+08 116.099 2e+06
TBSCAN TBSCAN CO-TABLE: DB2INST1

(6) (7) CUSTOMER
88366.6 274.214 Q1
67383 229
| |

2.87997e+08 73049
CO-TABLE: DB2INST1 CO-TABLE: DB2INST1

STORE_SALES DATE_DIM
Q3 Q2

Default Statistics With additional Column Group Statistics With additional Statistical Views

ML To The Rescue

Can ML avoid the need for the tuning by
experts? YES!

Are there areas not currently adequately
covered by the traditional optimizer? YES!

Predicate Support (1|2)

Predicates supported:

• Local Predicates with Equality, Range, Between , IN, OR

• Single-column equality pairwise join predicates over base tables.

Predicates not supported:

• multi-column and non-equality join predicates

• predicates with host variables or parameter markers not using REOPT

• predicates with expressions around the columns

• These will be evaluated by the traditional Db2 optimizer.

Predicate Support (2|2)

SELECT * FROM T1, T2

WHERE

T1.C0 = T2.C0 AND

T1.C6 IN (5, 3, 205) AND

T1.C1 = ‘abc’ AND

T1.C2 BETWEEN 5 AND 10 AND

T2.C3 <= 120 AND

(T1.C4 > 5 AND T1.C5 < 20 OR T1.C4 < 2 AND T1.C5 = 100) AND

T1.C3 = ? AND

MOD(T1.C4, 10) = 1;

-- Pair-Wise Join Predicates

-- IN Predicates

-- Equality Predicates

-- BETWEEN Predicates

-- Range Predicates

-- OR Predicates

-- Predicates With Parameter Markers

-- Predicates With Expressions

Db2 11.5.6 ML Optimizer Tech Preview

Architecture

Automatic Training

If no model exists, a
Discovery Engine
mines the data to
help training

The Auto-Training
Engine looks for
tables without a
model

Sample data is
retrieved from the
table.

Training Queries
are automatically
generated

The ML model is
built using the
training queries
and sample data

Cardinality Prediction Using ML

Eligible Predicates
are encoded as
inputs to the ML
Engine

Queries processed
normally except for
card estimation

The ML estimates
are integrated in
the optimizer to get
the execution plan

The cardinality
estimation is sent
to the optimizer

The ML model
gives a cardinality
estimate for the
predicate set

Automatic Feedback and Retraining

Automatic Feedback of table data changes is used.

Future: Optimizer and run time feedback will be added

Automatic Retraining is currently triggered based on table
modification activity not unlike how Auto-RUNSTATS is
triggered for a table

Db2 11.5.6 ML Optimizer Tech Preview

Experimental Results

Model Size and Training Time

NN Model size is
1000X better !
30KB versus 30MB

NN Model Size is
significantly better
than with LGBM

Accuracy, (not
shown here) is a
little better with
LGBM than with NN

Training Time is
also better with NN
compared to LGBM

Training time is 5X
less than LGBM
5 m versus 1 m

Real World Problematic Queries

In practice the
average benefit will
be less

10X benefit in some
of these scenarios
simulated in-house

The goal is to get
more reliable
performance.

Query Example

The key benefit with ML was a
better cardinality estimate with
the set of highly correlated
BETWEEN predicates

An example of one of the
queries (Q10) in the benchmark

Q10 Cardinality / Plan Change with ML

No ML ML

Join Cardinality – Single Table Model

N:1 JOIN - ONE JOIN PREDICATE M:M JOIN - THREE JOIN PREDICATES

ML No ML, Basic StatisticsNo ML, Basic Statistics + CGS

For both plots : (1) Closer to 0 is better (2) Thinner box is better

Tech Preview Automation Switches

• Enabling the ML Optimizer
• db2set DB2_ML_OPT=“ENABLE:ON”

• db2 –tf MLOptimizerCreateTables.ddl

• Disabling the ML Optimizer
• db2set DB2_ML_OPT="ENABLE:OFF”

Manual Steps If Necessary

• Defining a Model:
CALL SYSTOOLS.DEFINE_MODEL(‘MYSCHEMA’, ‘MYTABLE’, ‘C1,C2,C3’,
OUT_TEXT)

• Toggle to use the traditional Optimizer:
db2set -im DB2_SELECTIVITY=”ML_PRED_SEL OFF”

• Deleting a model:
DELETE FROM SYSTOOLS.TABLE_MODELS
WHERE SCHEMANAME = ‘MYSCHEMA’ AND TABLENAME = ‘MYTABLE’;

Summary

The initial Db2 ML Optimizer goal is to improve cardinality estimation

This addresses the leading cause of performance issues

Reducing tuning needs will improve the out-of-the-box experiences

Infusing AI in the Db2 Optimizer is strategic

Speaker: Calisto Zuzarte
Company: IBM
Email Address: calisto@ca.ibm.com

