#### **Using Machine Learning in the Db2 Optimizer**

#### Calisto Zuzarte, IBM

#### WDUG

Wisconsin Db2 Users Group

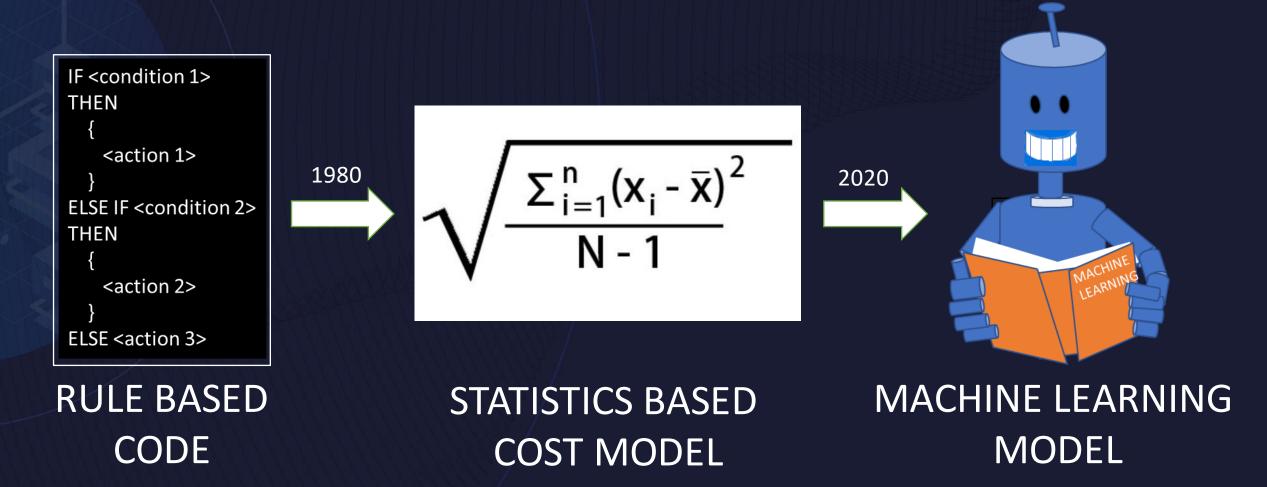
Virtual Conference | March 09, 2022

## Agenda

- Motivation
- Cardinality Estimation
- Db2 11.5.6 ML Optimizer Tech Preview
  - Architecture
  - Experimental Results

# Motivation

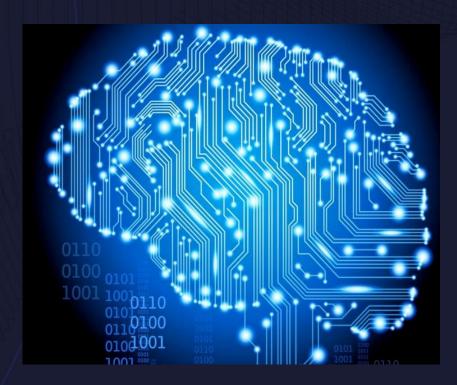
## Evolution Of the Database Optimizer



# **Optimizer Challenges**

| Performance Stability | Query complexity, higher data volumes and demanding user expectations require an easily adaptable and stable solution |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------|
| Tuning Effort         | Minimum customer tuning needed to adapt to specific characteristics of user data, workloads and environment           |
| Development<br>Effort | Minimum effort needed to the optimizer with new features, configuration changes and hardware upgrades                 |

Artificial Intelligence (AI) is the simulation of human intelligence in machines that are programmed to think like humans.



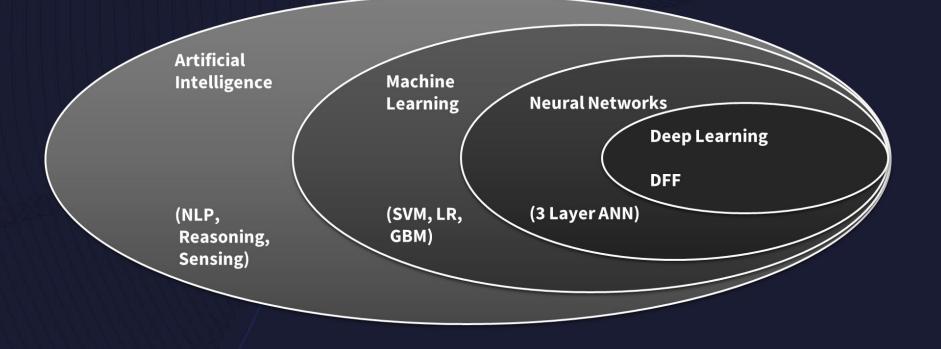
Machine Learning provides AI systems the ability to automatically learn and improve from experience without being explicitly programmed.



A Neural Network is a series of algorithms that tries to recognize underlying relationships in a set of data using interconnected nodes much like neurons in a human brain



# Infusing AI in Db2



## **Benefits of Machine Learning**

02

01

Adapt to specific user data characteristics Adapt to specific user query workloads 03

Learn from optimizer and run-time feedback

# Machine Learning Goals

| Automate Everything               | Make performance tuning simple with automation         |
|-----------------------------------|--------------------------------------------------------|
| Achieve Reliable<br>Performance   | By constantly learning and improving the model         |
| Simplify Optimizer<br>Development | By training the model in the specific user environment |
| Infuse ML Gradually               | Gradually replace traditional optimizer techniques     |

# A Phased Approach

| Phase 1 | Cardinality Estimation |
|---------|------------------------|
|         |                        |
| Phase 2 | Join Planning          |
|         |                        |
| Phase 3 | Other Aspects          |

# **Cardinality Estimation**

## **Cardinality Estimation**

Cardinality Estimation is the number of rows input to or output from an operator

Cost based optimizers rely on reasonably accurate cardinality

Bad cardinality estimation is often the primary source of query performance problem tickets from customers

#### Tuning For Good Cardinality Estimates

Actual: 10,113,972



With additional Column Group Statistics With additional Statistical Views

**Default Statistics** 

## ML To The Rescue

# Can ML avoid the need for the tuning by experts? YES!

Are there areas not currently adequately covered by the traditional optimizer? YES!

## Predicate Support (1|2)

#### Predicates supported:

- Local Predicates with Equality, Range, Between, IN, OR
- Single-column equality pairwise join predicates over base tables.

#### Predicates not supported:

- multi-column and non-equality join predicates
- predicates with host variables or parameter markers not using REOPT
- predicates with expressions around the columns
- These will be evaluated by the traditional Db2 optimizer.

#### Predicate Support (2|2)

```
SELECT * FROM T1, T2

WHERE

T1.C0 = T2.C0 AND -- Pair-Wise Join Predicates

T1.C6 IN (5, 3, 205) AND -- IN Predicates

T1.C1 = 'abc' AND -- Equality Predicates

T1.C2 BETWEEN 5 AND 10 AND -- BETWEEN Predicates

T2.C3 <= 120 AND -- Range Predicates

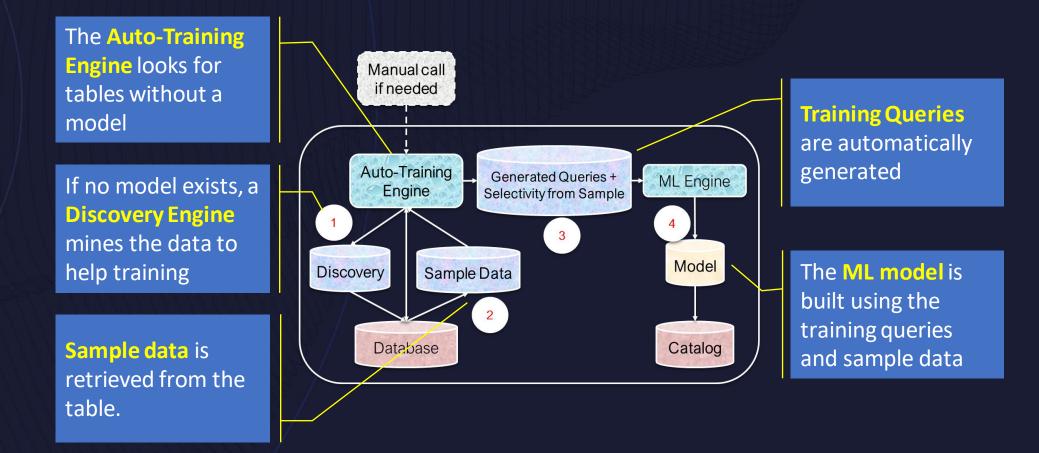
(T1.C4 > 5 AND T1.C5 < 20 OR T1.C4 < 2 AND T1.C5 = 100) AND -- OR Predicates

T1.C3 = ? AND -- Predicates With Parameter Markers

MOD(T1.C4, 10) = 1; -- Predicates With Expressions
```

# Db2 11.5.6 ML Optimizer Tech Preview Architecture

## Automatic Training

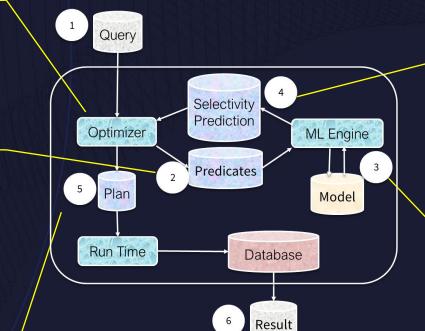


## Cardinality Prediction Using ML

Queries processed normally except for card estimation

Eligible Predicates are encoded as inputs to the ML Engine

The ML estimates are integrated in the optimizer to get the execution plan



The cardinality estimation is sent to the optimizer

The ML model gives a cardinality estimate for the predicate set

#### Automatic Feedback and Retraining

Automatic Feedback of table data changes is used. Future: Optimizer and run time feedback will be added

**Automatic Retraining** is currently triggered based on table modification activity not unlike how Auto-RUNSTATS is triggered for a table

# Db2 11.5.6 ML Optimizer Tech Preview Experimental Results

#### Model Size and Training Time

**NN Model Size** is significantly better than with LGBM

NN Model size is 1000X better ! 30KB versus 30MB

Accuracy, (not shown here) is a little better with LGBM than with NN

|                  |                  |        |                   | /    |
|------------------|------------------|--------|-------------------|------|
| TABLENAME        | MODEL SIZE (MiB) |        | TRAINING TIME (S) |      |
|                  | NN               | LGBM   | NN                | LGBM |
| CALL_CENTER      | 0.021            | 0.003  | 0                 | 2    |
| CATALOG_PAGE     | 0.022            | 33.401 | 60                | 94   |
| CATALOG_RETURNS  | 0.037            | 32.742 | 67                | 358  |
| CATALOG_SALES    | 0.037            | 32.745 | 103               | 376  |
| CUSTOMER         | 0.024            | 33.147 | 37                | 358  |
| CUSTOMER_ADDRESS | 0.023            | 33.717 | 34                | 89   |
| DATE_DIM         | 0.037            | 33.176 | 43                | 362  |
| INCOME_BAND      | 0.021            | 0.066  | 1                 | 2    |
| ITEM             | 0.030            | 6.432  | 68                | 307  |
| PROMOTION        | 0.022            | 13.707 | 480               | 14   |
| REASON           | 0.021            | 0.146  | 9                 | 1    |
| SHIP_MODE        | 0.021            | 0.182  | 28                | 2    |
| STORE            | 0.022            | 0.422  | 46                | 2    |
| STORE_RETURNS    | 0.024            | 32.763 | 47                | 361  |
| STORE_SALES      | 0.037            | 32.865 | 68                | 342  |
| TIME_DIM         | 0.022            | 1.861  | 34                | 80   |
| WAREHOUSE        | 0.021            | 0.003  | 0                 | 1    |
| WEB_PAGE         | 0.022            | 7.889  | 40                | 3    |
| WEB_RETURNS      | 0.037            | 32.767 | 82                | 347  |
| WEB_SALES        | 0.037            | 32.757 | 82                | 368  |
| WEB_SITE         | 0.024            | 2.650  | 46                | 6    |

Training Time is also better with NN compared to LGBM

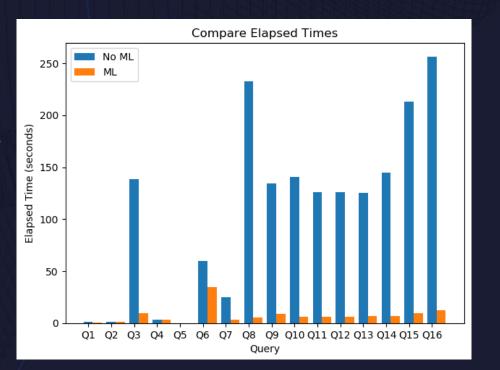
Training time is 5X less than LGBM 5 m versus 1 m

# Real World Problematic Queries

10X benefit in some of these scenarios simulated in-house

In practice the average benefit will be less

The goal is to get more reliable performance.

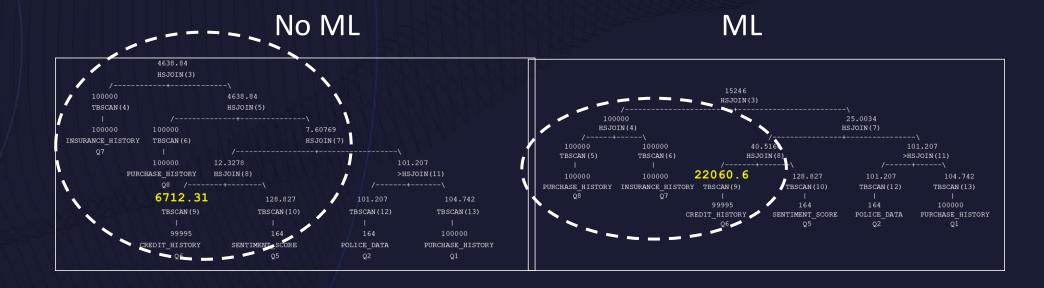


#### Query Example

An example of one of the queries (Q10) in the benchmark

The key benefit with ML was a better cardinality estimate with the set of highly correlated BETWEEN predicates SELECT IH.AMOUNT. CHD.COMMENTS FROM DEMO.PURCHASE\_HISTORY PH, DEMO.INSURANCE HISTORY IH. DEMO.CREDIT\_HISTORY\_DATA CHD, DEMO.SENTIMENT\_SCORE\_DATA SSD, DEMO.POLICE\_DATA PD LEFT OUTER JOIN (SELECT EMAILID FROM DEMO.PURCHASE HISTORY PH1 WHERE PH1.PURCHASE\_DATE BETWEEN '2018-12-30' and '2018-12-31' ) X ON PD.EMAILID = X.EMAILID WHERE PH.INSURANCE ID = IH.INSURANCE ID AND PH.PURCHASE DATE BETWEEN '2014-01-01' AND '2019-12-31' AND PD.EMAILID = PH.EMAILID AND PD.CRIMINAL\_RANK > .4 AND PD.EMAILID = SSD.EMAILID AND SSD.SCORE < .7 AND PH.EMAILID = CHD.EMAILID AND CHD.PAY 0 BETWEEN 0 AND 2 AND CHD.PAY\_2 BETWEEN 0 AND 2 AND CHD.PAY\_3 BETWEEN 0 AND 2 AND CHD.PAY 5 BETWEEN 0 AND 2 AND CHD.PAY\_6 BETWEEN 0 AND 2 AND CHD.PAY\_4 BETWEEN 0 AND 2 AND CHD.BILL AMT1 BETWEEN 150 AND 746814 AND CHD.BILL AMT2 BETWEEN 0 AND 743970 AND CHD.BILL\_AMT3 BETWEEN 0 AND 689643 AND CHD.BILL AMT4 BETWEEN 0 AND 706864

# Q10 Cardinality / Plan Change with ML



# Join Cardinality – Single Table Model



N:1 JOIN - ONE JOIN PREDICATE

M:M JOIN - THREE JOIN PREDICATES

#### Tech Preview Automation Switches

#### • Enabling the ML Optimizer

- db2set DB2\_ML\_OPT="ENABLE:ON"
- db2 –tf MLOptimizerCreateTables.ddl

#### • Disabling the ML Optimizer

db2set DB2\_ML\_OPT="ENABLE:OFF"

#### Manual Steps If Necessary

 Defining a Model: CALL SYSTOOLS.DEFINE\_MODEL('MYSCHEMA', 'MYTABLE', 'C1,C2,C3', OUT\_TEXT)

• Toggle to use the traditional Optimizer: db2set -im DB2\_SELECTIVITY="ML\_PRED\_SEL OFF"

 Deleting a model: DELETE FROM SYSTOOLS.TABLE\_MODELS WHERE SCHEMANAME = 'MYSCHEMA' AND TABLENAME = 'MYTABLE';

#### Summary

The initial Db2 ML Optimizer goal is to improve cardinality estimation

This addresses the leading cause of performance issues

Reducing tuning needs will improve the out-of-the-box experiences

Infusing AI in the Db2 Optimizer is strategic

Speaker: Calisto Zuzarte Company: IBM Email Address: calisto@ca.ibm.com