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Motivation



IF <condition 1>
THEN

{

<action 1>
}
ELSE IF <condition 2>
THEN

{

<action 2>

}
ELSE <action 3>
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Optimizer Challenges

Performance Stability

Development
Effort

Tuning Effort



Artificial Intelligence (Al) is the simulation ¢
human intelligence in machines that are
programmed to think like humans.




Machine Learning provides Al systems the
ability to automatically learn and improve
from experience without being explicitly

programmed.




A Neural Network is a series of algorithms
that tries to recognize underlying
relationships in a set of data using

Interconnected nodes much like neurons ir
a human brain\




Infusing Al in Db2
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Benefits of Machine Learning




Machine Learning Goals

Automate Everything

Achieve Reliable
Performance

Simplify Optimizer
Development

Infuse ML Gradually



A Phased Approach

Cardinality Estimation

Join Planning

Other Aspects




Cardinality Estimation



Cardinality Estimation




Tuning For Good Cardinality Estimate
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ML To The Rescue




Predicate Support (1]2)

wlLocal Predicates with Equality, Range, Between, IN, OR
wSinglecolumn equality pairwise join predicates over base tables.

omulti-column and norequality join predicates

wpredicates with host variables or parameter markers not using REOPT
wpredicates with expressions around the columns

wThese will be evaluated by the traditional Db2 optimizer.



Predicate Support (2|2)

SELECT*FROMT1, T2
WHERE
T1.CO = T2.C0 AND- PairWise Join Predicate?k
T1.C6IN (5, 3, 205) AND- IN Predicates
¢ m®/abQ [ W5 Equality Predicatey
T1.C2BETWEENS5 AND 10 ANBETWEEN Predical*!
T2.C3 <= 120 AND -- Range Predicate3
(TLLCA>5ANDT1.C5<200R T1.C4<2AND T1.C5= 10@)%IREbdicates*
-- Predicates With Parameter Marker
; -- Predicates With Expression.



Db2 11.5.6 ML Optimizer Tech Preview
Architecture



Automatic Training

Manual call
if needed

Discovery

Auto-Training Generated Queries + ML Engine
Engine Selectivity from Sample

Sample Data \

Database Catalog




Cardinality Prediction Using ML




Automatic Feedback and Retraining




Db2 11.5.6 ML Optimizer Tech Preview
Experimental Results



Model Size and Training Time

NN Model Sizas
significantly better
than with LGBM

NN Model size is
1000X better!
30KB versus 30MB

Accuracy, (not
shown here) is a
little better with
LGBM than with NN
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Training Time is
also better with NN
compared to LGBM

Training time is 5X
less than LGBM
Smyversus 1 m



Real World Problematic Queries

10X benefit in some
of these scenarios
simulated inrhouse

Compare Elapsed Times

In practice the
average benefit will
be less
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The goal is to get
- Ql Q2 Q3 Q4 Q5 Qb Q7 Q8 Q9 Ql0Q11Qlz Ql3 Ql4 Ql5 Qle
more reliable Query

performance.




Query Example

SELECT

THAMOUNT,
CHD.COMMENTS

FROM

DEMO.PURCHASE_HISTORY PH,
DEMO.INSURANCE_HISTORY IH,
DEMO.CREDIT HISTORY DATA CHD,
DEMO.SENTIMENT _SCORE_DATA SSD,
DEMO.POLICE DATA PD
LEFT OUTER JOIN
(SELECT EMAILID
FROM DEMO.PURCHASE HISTORY PH1
WHERE PH1.PURCHASE_DATE BETWEEN '2018-12-30'and '2018-12-31") X
ON PD.EMAILID = X EMAILID

WHERE

PH.INSURANCE_ID = IHINSURANCE_ID AND
PH.PURCHASE_DATE BETWEEN '2014-01-01'AND '2019-12-31'AND
PD.EMAILID = PH.EMAILID AND
PD.CRIMINAL_RANK > .4 AND

PD.EMAILID = SSD.EMAILID AND

SSD.SCORE <.7 AND

PH.EMAILID = CHD.EMAILID AND

CHD.PAY 0 BETWEEN 0 AND 2 AND

CHD.PAY_2 BETWEEN 0 AND 2 AND

CHD.PAY_3 BETWEEN 0 AND 2 AND

CHD.PAY 5 BETWEEN 0 AND 2 AND

CHD.PAY_6 BETWEEN 0 AND 2 AND

CHD.PAY 4 BETWEEN 0 AND 2 AND
CHD.BILL_AMT1 BETWEEN 150 AND 746814 AND
CHD.BILL_AMT2 BETWEEN 0 AND 743970 AND
CHD.BILL_AMT3 BETWEEN 0 AND 689643 AND
CHD.BILL_AMT4 BETWEEN 0 AND 706864




Q10 Cardinality / Plan Change with M
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