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Motivation
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Optimizer Challenges

Query complexity, higher data volumes and demanding user 
expectations require an easily adaptable and stable solution   Performance Stability

Minimum customer tuning needed to adapt to specific 
characteristics of user data, workloads and environmentTuning Effort

Minimum effort needed to the optimizer with new features, 
configuration changes and hardware upgrades

Development 
Effort



Artificial Intelligence (AI) is the simulation of 
human intelligence in machines that are 
programmed to think like humans.



Machine Learning provides AI systems the 
ability to automatically learn and improve 
from experience without being explicitly 
programmed.



A Neural Network is a series of algorithms 
that tries to recognize underlying 
relationships in a set of data using 
interconnected nodes much like neurons in 
a human brain 



Infusing AI in Db2



Benefits of Machine Learning

Adapt to specific 
user data 
characteristics
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Adapt to specific 
user query 
workloads
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Learn from 
optimizer and 
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Machine Learning Goals

Make performance tuning simple with automation Automate Everything

By constantly learning and improving the model
Achieve Reliable 

Performance

By training the model in the specific user environment
Simplify Optimizer 

Development

Gradually replace traditional optimizer techniquesInfuse ML Gradually



A Phased Approach

Phase 3 Other Aspects

Phase 2 Join Planning

Phase 1 Cardinality Estimation



Cardinality Estimation



Cardinality Estimation

Cardinality Estimation is the number of rows input to or output 
from an operator 

Cost based optimizers rely on reasonably accurate cardinality

Bad cardinality estimation is often the primary source of query 
performance problem tickets from customers



Tuning For Good Cardinality Estimates 
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ML To The Rescue

Can ML avoid the need for the tuning by 
experts?  YES!

Are there areas not currently adequately 
covered by the traditional optimizer? YES!



Predicate Support (1|2)

Predicates supported:  

• Local Predicates with Equality, Range, Between , IN, OR 

• Single-column equality pairwise join predicates over base tables. 

Predicates not supported:

• multi-column and non-equality join predicates

• predicates with host variables or parameter markers not using REOPT

• predicates with expressions around the columns 

• These will be evaluated by the traditional Db2 optimizer.



Predicate Support (2|2)

SELECT * FROM T1, T2 

WHERE

T1.C0 = T2.C0 AND   

T1.C6 IN (5, 3, 205) AND 

T1.C1 = ‘abc’ AND 

T1.C2 BETWEEN 5 AND 10 AND 

T2.C3 <= 120 AND 

(T1.C4 > 5 AND T1.C5 < 20 OR  T1.C4 < 2 AND T1.C5 = 100) AND 

T1.C3 = ? AND 

MOD(T1.C4, 10) = 1;

-- Pair-Wise Join Predicates

-- IN Predicates

-- Equality Predicates

-- BETWEEN Predicates

-- Range Predicates

-- OR Predicates

-- Predicates With Parameter Markers

-- Predicates With Expressions



Db2 11.5.6 ML Optimizer Tech Preview

Architecture



Automatic Training

If no model exists, a 
Discovery Engine 
mines the data to 
help training 

The Auto-Training 
Engine looks for 
tables without a 
model 

Sample data is 
retrieved from the 
table. 

Training Queries 
are automatically 
generated

The ML model is 
built using the 
training queries 
and sample data 



Cardinality Prediction Using ML

Eligible Predicates 
are encoded as 
inputs to the ML 
Engine

Queries  processed 
normally except for 
card estimation 

The ML estimates 
are integrated in 
the optimizer to get 
the execution plan

The cardinality 
estimation is sent  
to the optimizer

The ML model
gives a  cardinality 
estimate for the 
predicate set



Automatic Feedback and Retraining

Automatic Feedback of table data changes is used. 

Future: Optimizer and run time feedback will be added

Automatic Retraining is currently triggered based on table 
modification activity not unlike how Auto-RUNSTATS is 
triggered for a table



Db2 11.5.6 ML Optimizer Tech Preview

Experimental Results



Model Size and Training Time

NN Model size is 
1000X better !
30KB versus 30MB

NN Model Size is 
significantly better 
than with LGBM

Accuracy, (not 
shown here) is a 
little better with 
LGBM than with NN

Training Time is 
also better with NN 
compared to LGBM

Training time is 5X 
less than LGBM
5 m versus 1 m



Real World Problematic Queries

In practice the 
average benefit will 
be less 

10X benefit in some 
of these scenarios 
simulated in-house

The goal is to get 
more reliable 
performance.



Query Example

The key benefit with ML was a 
better cardinality estimate with 
the set of highly correlated 
BETWEEN predicates

An example of one of the 
queries (Q10) in the benchmark



Q10 Cardinality / Plan Change with ML

No ML ML



Join Cardinality – Single Table Model

N:1 JOIN - ONE JOIN PREDICATE M:M JOIN - THREE JOIN PREDICATES 

ML No ML, Basic StatisticsNo ML, Basic Statistics + CGS

For both plots :      (1) Closer to 0 is better        (2) Thinner box is better



Tech Preview Automation Switches

• Enabling the ML Optimizer
• db2set DB2_ML_OPT=“ENABLE:ON”

• db2 –tf MLOptimizerCreateTables.ddl

• Disabling the ML Optimizer
• db2set DB2_ML_OPT="ENABLE:OFF”



Manual Steps If Necessary

• Defining a Model: 
CALL SYSTOOLS.DEFINE_MODEL(‘MYSCHEMA’, ‘MYTABLE’, ‘C1,C2,C3’, 
OUT_TEXT)

• Toggle to use the traditional Optimizer: 
db2set -im DB2_SELECTIVITY=”ML_PRED_SEL OFF”

• Deleting a model: 
DELETE FROM SYSTOOLS.TABLE_MODELS 
WHERE SCHEMANAME = ‘MYSCHEMA’ AND TABLENAME = ‘MYTABLE’;



Summary

The initial Db2 ML Optimizer goal is to improve cardinality estimation 

This addresses the leading cause of performance issues

Reducing tuning needs will improve the out-of-the-box experiences

Infusing AI in the Db2 Optimizer is strategic
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