Should You Embrace
Ember Crooks DEVOPS?

An Experienced Db2 DBA’s
Journey into DevOps

DevOps is a revolution in how technology is approached that gains in adoption every
year. Join Ember Crooks as she shares her journey into a fairly mature DevOps shop as

a DBA with no previous DevOps experience. In this session, we will:

Discuss what DevOps is and what it isn’t
Explore what DevOps means to the DBA
Understand at a high-level some of the decision points around running databases in

containers
Review a few DevOps tools a DBA should be familiar with

o

Defining
DevOps

The Wrong Definition

DevOps is a way for developers

to get SUID access to
production and make my life
as a DBA difficult.

When | first started hearing the term DevOps, | thought it was a way for developers to
break the then very strict wall between development and operations, and get access
to my databases. Generally, developers with access to production was a bad thing
that would cause me to get paged. Many years later, | can see that this is not true.
Developers still do not have unfettered access to a production database, even in a
DevOps environment. There are certainly aspects of my job that are different, and
there are things that developers do that make it into production without direct action
from me, but this is only through a well defined and thoroughly tested process.

* Automation

* Agile Methodology
* Fail Fast
* Test Thoroughly

* Speed

* Infrastructure as Code
* Monitoring

* Collaboration

* Continuous Improvement
* Culture

There are a vast array of different definitions of DevOps. To really define DevOps, you
probably need a book. There are some pillars to what DevOps means that can help us
understand it. A shop that is DevOps may not be all of these things, and may be in a
different place in their journey on each of these things.

Automation means eliminating manual processes as much as possible. Our job
becomes more the automation of processes than the execution of them.

An agile methodology is common. Agile embraces failing fast, testing thoroughly, and
delivering new functionality in smaller chunks instead of huge releases.

With or without an agile methodology speed is one of the contentious points
between DevOps and non-DevOps teams

Infrastructure as code means that we manage as much as possible through code and
configuration files. We’'ll talk more later about what that means for Db2.

Monitoring is critical to DevOps so we can identify and heal from failures.
Collaboration is critical to a DevOps team to bridge the vast array of technologies
supported in a coherent and reproducible manner.

DevOps is about as far away from a culture of blame as you can get, with the focus on
always identifying where we can be better.

DevOps is a culture that must be compatible with the organization’s culture to
survive.

Types of DevOps Teams

* Stream-aligned team

Team Topologies:
https://teamtopologies.com

https://youtu.be/haejb5rzKsM

In a more traditional organization, teams are fully separated by function. At
employers I've worked at in the past, we had the Systems Administration group,
which was likely separated by operating system, and depending on the size of the
company might be segmented much further. I've worked with teams where their only
job was access control on in-profile Linux servers. There was a separate team for
access control on out of profile Linux servers. Whatever the structure, the answer to
the question “whose job is it to do X” was usually fairly straight forward. In a devops
organization, the lines might be a bit blurred. I've spent a significant part of my first
year in DevOps figuring out whether | should do a thing or if | should ask someone
else to do a thing.

Reading the book Team Topologies and even just watching the freely available video
has helped me understand a lot in this space.

https://youtu.be/haejb5rzKsM

Types of DevOps Teams

* Stream-aligned team

Team Topologies:
https://teamtopologies.com

https://youtu.be/haejb5rzKsM

While I’'ve found this structure enlightening, I've also have seen that for smaller
teams, the lines are often blurred.

https://youtu.be/haejb5rzKsM

Not a One-Way Street

Development

@henrikuiper

Recently | participated in a discussion about DevOps, and | absolutely loved what
Henri Kuiper said in that discussion. DevOps is not just about infusing Dev into Ops,
but also about the other direction — infusing Ops back into Dev.

https://www.youtube.com/watch?v=0XczEXXff74

This comes home to roost nearly every day in my interactions with developers.

o

DevOps and the
DBA

Database
maintenance

Code changes,
deploys, database
structure changes
(CI/cD)

Runbook automation
¢ Repetitive manual fixes

* Basic triage

* Common tasks

Environment and
database builds

10

Support a very
| short response

Robust
rollback
plans

Defined approval path
for changes, some
approvals automated

=] Automation

11

Infrastructure as Code

UPL.
<DBNA..

“FG FOR
NG ..

Change in a text file, change
is moved to servers using:

e Container: deploy of the container

* VM/Server: configuration
management tool

12

Monitoring and Continuous Improvement

DevOps is a
journey, not

|
@ build a new

one

a destination a
If it fails, P AP ?

13

Collaboration and Culture

: h /A 1t’s OK to say “l don’t know”

Work with other teams to understand how
you can help them and how they can help you

i
“ ‘\“ Management can’t implement DevOps
™/ without team member buy-in

-Collaboration
‘ and Culture ~ Teams can’t implement DevOps without
¥ Management buy-in

14

DBA Learning
Curve

Code version
control

Automation
tools

Containerization
and
orchestration

Configuration
management @
tools

DEIE]EN
version control

15

Containerization

of Databases

16

Containerization is NOT
required for DevOps

17

Basics of Containers

Bare Metal

App App App
Operating System

Infrastructure

Virtual Machine

App App App App

‘ Bin/Library ‘ ‘ Bin/Library ‘

‘ Operating System ‘ ‘ Operating System ‘

M 1 M
Hypervisor
Operating System

Infrastructure

https://www.docker.com/resources/what-container

Containers

App App App App

Bin/Lib Bin/Lib Bin/Lib ‘ Bin/Lib

Container Runtime
Operating System

Infrastructure

18

How Do | Create a Container?

* Dockerfile
* Starting image

* Entrypoint script
* Build image
* Run image

19

Persistence

* Containers are disposable
* |f it fails, build a new one

* Databases are not disposable

* Databases often have
connections between the
version and the data on disk

20

Advantages of
Containerization for
Databases

* Ease of automated builds

* Ease of managing
configuration

* Ease of upgrade

* Supporting multiple
development streams

21

Disadvantages of
Containerizing Databases

* Persistence
* Learning how to containerize
* Vendor support

* |IBM only provides Db2 production
containers on RH Open Shift

* Host size

* Gotchas and edge cases
* DB-level HA vs. container-level HA

22

Choices Made in
My Current
Environment

* DB2 in containers for dev and QA

* Other administrators can spin up new dev
environments at will, without a DBA

* What data goes into a new environment?

* Db2 in EC2 instances for Stage, Load Test, and
Production

* Cloud formation templates

* Use the same build scripts used for docker
containers to build the environments.

* Puppet manages configuration after build

23

DevOps Tools
for the DBA

o

24

Containerization and
Orchestration

7 Examples:

* Docker

* Kubernetes

* Rancher

* RedHat Open Shift
* CloudFormation

Purpose:

¢ Provide a framework for building and running
containers or servers

* Allow local testing of containers

25

Configuration
Management Tools

Examples:

* Puppet
e Chef
 Ansible

Purpose:

* Manage configuration of servers and databases

¢ Deploy each configuration change to multiple
servers/databases

26

Code Version Control

Examples:
* GitHub

* Git

* SVN

Purpose:

* Manage changes to:
e Infrastructure code
* Automation code
* Monitoring code

AT
220081 CAS
g 2805

.
1918:00601 3158830 ASRE
1280508261 218050E GHCOR 8

DA:3F5uel386EBED9:: 13

589884635 LDIEFS 8¢ '

SBILLFD 5 s l6 4D9 #
LER36CLFF 3

27

Database Version
Control

Examples:

* Liquibase
* Flywheel

Purpose:

* Make all database structure and ddl changes

* Couple database structure/dd| changes with code deploys
* Manage rollback of database changes in some cases

* Ensure the schema of related databases are in sync

* Manage the data of configuration tables

28

Automation Tools

Examples:

* Jenkins
* Gitlab
* Ansible

Purpose:
 Schedule regularly-occurring tasks like database

maintenance

 Allow others to trigger database jobs (maintenance, data
loads, others)
* Provide a centralized location to review success of all jobs

29

Runbook Automation

Examples:

e Rundeck

e Custom coded chat bots
Purpose:

e Automate the remaining stuff you might
otherwise do manually

» Allow people who are not DBAs to modify
production database in well-defined ways

Examples to share

* User status update

* Enable/Disable store online ordering
* Enable/Disable website features

30

Questions?

* Ember Crooks
* ember.crooks@gmail.com
* Twitter: @ember crooks

* https://datageek.blog

31

